【题目】在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A第,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:
(1)A、B两地之间的距离: km;
(2)甲的速度为 km/h;乙的速度为30km/h;
(3)点M的坐标为 ;
(4)求:甲离B地的距离y(km)与行驶时间x(h)之间的函数关系式(不必写出自变量的取值范围).
【答案】(1)30;(2)15;(3)(,20);(4)y=-15x+30.
【解析】
试题分析:(1)根据函数图象就可以得出A、B两地的距离;
(2)根据函数图象反应的时间即可求出甲乙的速度;
(3)根据函数图象反应的时间可以求出甲乙的速度,就可以求出相遇时间,就可以求出乙离B地的距离而得出相遇点M的坐标;
(4)设甲离B地的距离y(km)与行驶时间x(h)的函数关系式为y=kx+b,把(0,20),(2,0)代入即可解答.
试题分析:(1)由函数图象,得
A、B两地的距离为30千米.
答:A、B两地的距离为30千米;
(2)由函数图象,得
甲的速度为:30÷2=15千米/时,
乙的速度为:30÷1=30千米/时;
(3)甲乙相遇的时间为:30÷(15+30)=小时.
相遇时乙离开B地的距离为:×30=20千米.
∴M(,20),
表示小时时两车相遇,此时距离B地20千米;
(4)设:y=kx+b,
根据题意得
解得k=-15,
所以所求函数关系式为y=-15x+30.
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF交BD于O.
(1)求证:BO=DO;
(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是边长为4的正方形,在正方形的一个角上剪去长方形CEFG,其中E,G分别是边CD,BC上的点,且CE=3,CG=2,剩余部分是六边形ABGFED,请你建立适当的直角坐标系求六边形ABGFED各顶点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为( )
A.2
B.8
C.2
D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从点B出发,沿着B﹣A﹣D在菱形ABCD的边上运动,运动到点D停止,点P′是点P关于BD的对称点,PP′交BD于点M,若BM=x,△OPP′的面积为y,则y与x之间的函数图象大致为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠CAE是△ABC的外角,AD平分∠EAC,且AD∥BC.过点C作CG⊥AD,垂足为G,AF是BC边上的中线,连接FG.
(1)求证:AC=FG;
(2)当AC⊥FG时,△ABC应是怎样的三角形?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】填空完成推理过程:
如图,AD⊥BC于点D,EG⊥BC于点G,AD平分∠BA C. 求证: ∠E=∠1.
证明: ∵AD⊥BC于点D,EG⊥BC于点G,(已知)
∴∠ADC=∠EGC=90°,(垂直的定义)
∴AD∥EG,( )
∴∠1= ,( )
∠E=∠3,(两直线平行,同位角相等)
∵AD平分∠BAC,(已知)
∴∠2=∠3,( )
∴∠E=∠1.(等量代换)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=4 cm,AD=12 cm,点P在AD边上以每秒1 cm的速度从点A向点D运动,点Q在BC边上,以每秒4 cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在这段时间内,当运动时间=_____时线段PQ∥AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一种商品的标准价格是200元,但随着季节的变化,商品的价格可浮动,想一想.
的含义是什么?
请你计算出该商品的最高价格和最低价格;
如果以标准价为标准,超过标准价记“”,低于标准价记“”,该商品价格的浮动范围又可以怎样表示?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com