精英家教网 > 初中数学 > 题目详情

小明和小方分别设计了一种求n边形的内角和(n-2)×180°(n为大于2的整数)的方案:

(1)小明是在n边形内取一点P,然后分别连结PA1PA2、…、PAn(如图1);

(2)小红是在n边形的一边A1A2上任取一点P,然后分别连结PA4、PA5、…、PA1(如图2).

请你评判这两种方案是否可行?如果不行的话,请你说明理由;如果可行的话,请你沿着方案的设计思路把多边形的内角和求出来.

 

【答案】

可行

【解析】

试题分析:根据三角形的内角和定理结合两个图形的特征依次分析即可作出判断.

(1)n边形的内角和为180°×n-180°×2=(n-2)×180°;

(2)n边形的内角和为180°×(n-1)-180°=(n-2)×180°;

所以这两种方案均可行.

考点:多边形的内角和定理的证明

点评:多边形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

请你裁定,你一定要主持公道啊!
小明和小方分别设计了一种求n边形的内角和(n-2)×180°(n为大于2的整数)的方案:
(1)小明是在n边形内取一点P,然后分别连结PA1、PA2、…、PAn(如图1);
(2)小红是在n边形的一边A1A2上任取一点P,然后分别连结PA4、PA5、…、PA1(如图2).
请你评判这两种方案是否可行?如果不行的话,请你说明理由;如果可行的话,请你沿着方案的设计思路把多边形的内角和求出来.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年河北省涉县七年级下学期期末考试数学试卷(带解析) 题型:解答题

小明和小方分别设计了一种求n边形的内角和(n-2)×180°(n为大于2的整数)的方案:

(1)小明是在n边形内取一点P,然后分别连结PA1PA2、…、PAn(如图1);
(2)小红是在n边形的一边A1A2上任取一点P,然后分别连结PA4、PA5、…、PA1(如图2).
请你评判这两种方案是否可行?如果不行的话,请你说明理由;如果可行的话,请你沿着方案的设计思路把多边形的内角和求出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

请你裁定,你一定要主持公道啊!
小明和小方分别设计了一种求n边形的内角和(n-2)×180°(n为大于2的整数)的方案:
(1)小明是在n边形内取一点P,然后分别连结PA1、PA2、…、PAn(如图1);
(2)小红是在n边形的一边A1A2上任取一点P,然后分别连结PA4、PA5、…、PA1(如图2).
请你评判这两种方案是否可行?如果不行的话,请你说明理由;如果可行的话,请你沿着方案的设计思路把多边形的内角和求出来.

查看答案和解析>>

同步练习册答案