精英家教网 > 初中数学 > 题目详情
精英家教网如图,在矩形ABCD中,AB=2,BC=
3
,两顶点A、B分别在平面直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则当OC为最大值时,点C的坐标是
 
分析:E为AB的中点,当O,E及C共线时,OC最大,此时OE=
1
2
AB=1,由勾股定理求出CE=2,OC=3,设C的坐标是(x,y),由勾股定理得:x2+y2=32,再证明△AOB∽△BEC,△AOB∽△CEO,可得:
AB
CO
=
BO
EO
BO
CE
=
AB
BC
,再代入相应的数值可得:
3
3
x=y
,再结合x2+y2=32,求出即可.
解答:精英家教网解:E为AB的中点,当O,E及C共线时,OC最大,
此时OE=BE=
1
2
AB=1,由勾股定理得:CE=
BC2+BE2
=2,
OC=1+2=3,
设C的坐标是(x,y),
由勾股定理得:x2+y2=32
∵EO=BE,
∴∠EOB=∠EBO,
∵∠CFO=∠AOB=90°,∠EOB=∠EBO,
∴△AOB∽△CFO,
AB
CO
=
BO
FO

2
3
=
BO
x

∴OB=
2
3
x

∵∠CBA=90°,CE=2,BE=1,
∴∠BCO=30°,∠CEB=60°,
∴∠AEO=∠CEB=60°,
∵AE=OE,
∴△AEO是等边三角形,
∴∠BAO=∠CEB=60°,∠CBE=∠AOB=90°,
∵△AOB∽△BEC,
BO
CE
=
AB
BC

BO
y
=
2
3

2
3
x
y
=
2
3

3
3
x=y

∴x2+(
3
3
x
)2=32
解得:x=
3
3
2
,y=
3
2

故答案为:(
3
3
2
3
2
).
点评:本题主要考查对直角三角形斜边上的中线,勾股定理,坐标与图形性质等知识点的理解和掌握,能根据题意求出OC的最大值是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案