5£®¿ì¡¢ÂýÁ½³µ·Ö±ð´ÓÏà¾à480ǧÃ×·³ÌµÄ¼×¡¢ÒÒÁ½µØͬʱ³ö·¢£¬ÔÈËÙÐÐÊ»£¬ÏÈÏàÏò¶øÐУ¬Í¾ÖÐÂý³µÒò¹ÊÍ£Áô1Сʱ£¬È»ºóÒÔÔ­ËٶȼÌÐøÏò¼×µØÐÐÊ»£¬µ½´ï¼×µØºóÍ£Ö¹ÐÐÊ»£»¿ì³µ´ïµ½Òҵغó£¬Á¢¼´°´Ô­Â·Ô­ËÙ·µ»Ø¼×µØ£¨¿ì³µµôÍ·µÄʱ¼äºöÂÔ²»¼Æ£©£¬¿ì¡¢ÂýÁ½³µ¾àÒҵصÄ·³Ìy£¨Ç§Ã×£©ÓëËùÓÃʱ¼äx£¨Ð¡Ê±£©Ö®¼äµÄº¯ÊýͼÏóÈçͼ£®Çë½áºÏͼÏóÐÅÏ¢½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©Âý³µµÄÐÐÊ»ËÙ¶ÈÊÇ60ǧÃ×/Сʱ£¬aµÄÖµÊÇ360£¬¿ì³µµÄÐÐÊ»ËÙ¶ÈÊÇ120ǧÃ×/Сʱ£»
£¨2£©Á½³µ³ö·¢¶à³¤Ê±¼äµÚÒ»´ÎÏàÓö£¿
£¨Ìáʾ£ºÑ¡Óó£¼ûÐгÌÓ¦ÓÃÌâµÄ½â¾ö°ì·¨À´½â¾ö´ËÎÊÌâ±È½Ï¼òµ¥£©

·ÖÎö £¨1£©¸ù¾Ýº¯ÊýͼÏóºÍÌâÒâ¿ÉÒÔÇóµÃÂý³µµÄÐÐÊ»Ëٶȡ¢aµÄÖµºÍ¿ì³µµÄÐÐÊ»Ëٶȣ»
£¨2£©¸ù¾Ý£¨1£©ÖеĴ𰸿ÉÒÔÁ½³µµÚÒ»´ÎÏàÓöËüÃǵÄÐгÌÖ®ºÍÕýºÃÊÇ480ǧÃ×£¬´Ó¶ø¿ÉÒÔ½â´ð±¾Ì⣮

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬
Âý³µµÄËÙ¶ÈÊÇ£º480¡Â£¨9-1£©=60ǧÃ×/ʱ£¬a=60¡Á£¨7-1£©=360£¬¿ì³µµÄËÙ¶ÈΪ£º£¨480+360£©¡Â7=120ǧÃ×/ʱ£¬
¹Ê´ð°¸Îª£º60£¬360£¬120£»
£¨2£©ÉèÁ½³µ¾­¹ýtСʱµÚÒ»´ÎÏàÓö£¬
£¨120+60£©t=480£¬
½âµÃ£¬t=$\frac{8}{3}$£¬
´ð£ºÁ½³µ³ö·¢$\frac{8}{3}$СʱÁ½³µµÚÒ»´ÎÏàÓö£®

µãÆÀ ±¾Ì⿼²éÒ»´Îº¯ÊýµÄÓ¦Ó㬽â´ð±¾ÌâµÄ¹Ø¼üÊÇÃ÷È·ÌâÒ⣬ÕÒ³öËùÇóÎÊÌâÐèÒªµÄÌõ¼þ£¬ÀûÓÃÊýÐνáºÏµÄ˼ÏëºÍÒ»´Îº¯ÊýµÄÐÔÖʽâ´ð£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®£¨1£©Òòʽ·Ö½â£º2m2n-8mn+8n£®
£¨2£©½â²»µÈʽ×é$\left\{\begin{array}{l}{x-3£¼1}\\{3x+2¡Ü4}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖª£¨a-1£©2+|b+1|+$\sqrt{b+c-a}$=0£¬Ôòa+b+c=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏÂÁз½³ÌÖÐÊÇÒ»Ôª¶þ´Î·½³ÌµÄÊÇ£¨¡¡¡¡£©
A£®ax2+bx+c=0B£®-2x2=0C£®2x£¨x-1£©=2x2+3D£®3x+$\frac{1}{x}$=4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªº¯Êýy=-kx£¨k¡Ù0£©µÄͼÏó¾­¹ýµÚÒ»¡¢ÈýÏóÏÞ£¬£¨-2£¬y1£©¡¢£¨-1£¬y2£©¡¢£¨2£¬y3£©ÊǺ¯Êýy=£¨2k-9£©x-1ͼÏóÉϵÄÈý¸öµã£¬Ôòy1¡¢y2¡¢y3µÄ´óС¹ØϵÊÇ£¨¡¡¡¡£©
A£®y2£¼y3£¼y1B£®y1£¼y2£¼y3C£®y3£¼y1£¼y2D£®y3£¼y2£¼y1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªµãA£¨2£¬5£©¡¢B£¨-3£¬5£©¡¢C£¨-2£¬-3£©¡¢D£¨6£¬-3£©£¬ÄÇôËıßÐÎABCDµÄÃæ»ýµÈÓÚ52£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®¶ÔÓÚ$\sqrt{25}$£¬$\sqrt{2}$¡Á$\sqrt{5}$£¬£¨2$\sqrt{5}$£©2£¬$\sqrt{2}$¡Â$\sqrt{5}$ÕâËĸöËãʽ£¬ÇóÖµ½á¹û×î´óµÄÊÇ£¨¡¡¡¡£©
A£®$\sqrt{25}$B£®$\sqrt{2}$¡Á$\sqrt{5}$C£®£¨2$\sqrt{5}$£©2D£®$\sqrt{2}$¡Â$\sqrt{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨1-$\frac{1}{x+3}$£©¡Â$\frac{{x}^{2}-4}{x+3}$£¬ÆäÖÐx=$\sqrt{5}$+2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£ºa£¨1-a£©+£¨a+2£©£¨a-2£©£¬ÆäÖÐa=$\sqrt{2}$+4£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸