【题目】如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=CD=8,过点B作EB⊥AB,交CD于点E.若DE=6,则AD的长为___________.
【答案】10
【解析】
作BF⊥AD与F,就可以得出四边形BCDF是矩形,进而得出四边形BCDF是正方形,就有BC=BF=FD,证明△BCE≌△BFA就可以得出AF=CE,进而得出结论.
解:作BF⊥AD与F,
∴∠AFB=BFD=90°,
∵AD∥BC,
∴∠FBC=∠AFB=90°,
∵∠C=90°,
∴∠C=∠AFB=∠BFD=∠FBC=90°.
∴四边形BCDF是矩形.
∵BC=CD,
∴四边形BCDF是正方形,
∴BC=BF=FD.
∵EB⊥AB,
∴∠ABE=90°,
∴∠ABE=∠FBC,
∴∠ABE-∠FBE=∠FBC-∠FBE,
∴∠CBE=∠FBA.
在△BCE和△BFA中
∴△BCE≌△BFA(ASA),
∴CE=FA.
∵CD=BC=8,DE=6,
∴DF=8,CE=2,
∴FA=2,
∴AD=8+2=10.
故答案为10.
科目:初中数学 来源: 题型:
【题目】如图,已知中,,,动点在的延长线上运动,动点在的
延长线上运动,且保持的值为.设,.
求与之间的函数关系式;
用描点法画出中函数的图象;
已知直线与中函数图象的交点坐标是,求的值;
求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点A是函数y=﹣(x<0)图象上的一点,连结AO并延长交函数y=﹣(x>0)的图象于点B,点C是x轴上一点,且AC=AO,则△ABC的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AB=6cm,BC=3cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,如果P、Q两点同时出发。
(1)几秒钟后,P、Q间的距离等于4cm?
(2)几秒种后,△BPQ的面积与四边形CQPA的面积相等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形.若OA1=1,则△A6B6A7的边长为( )
A.32B.24C.16D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题8分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求证:△ABC≌△AED;
(2)当∠B=140°时,求∠BAE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系 XOY中,对于任意两点 (,)与 (,)的“非常距离”,给出如下定义: 若 ,则点 与点 的“非常距离”为 ;若 ,则点 与点的“非常距离”为 .
例如:点 (1,2),点 (3,5),因为 ,所以点 与点 的“非常距离”为 ,也就是图1中线段 Q与线段 Q长度的较大值(点 Q为垂直于 y轴的直线 Q与垂直于 x轴的直线 Q的交点)。
(1)已知点 A(-,0), B为 y轴上的一个动点,①若点 A与点 B的“非常距离”为2,写出一个满足条件的点 B的坐标;②直接写出点 A与点 B的“非常距离”的最小值;
(2)已知 C是直线 上的一个动点,①如图2,点 D的坐标是(0,1),求点 C与点 D的“非常距离”的最小值及相应的点 C的坐标; ②如图3, E是以原点 O为圆心,1为半径的圆上的一个动点,求点 C与点 E的“非常距离”的最小值及相应的点 E和点 C的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标平面内,已点A(3,0)、B(-5,3),将点A向左平移6个单位到达C点,将点B向下平移6个单位到达D点.
(1)写出C点、D点的坐标:C __________,D ____________ ;
(2)把这些点按A-B-C-D-A顺次连接起来,这个图形的面积是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线l的解析式为y=x﹣1,抛物线y=ax2+bx+2经过点A(m,0),B(2,0),D(1,)三点.
(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;
(2)已知点 P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E,延长PE与直线l交于点F,请你将四边形PAFB的面积S表示为点P的横坐标x的函数,并求出S的最大值及S最大时点P的坐标;
(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com