精英家教网 > 初中数学 > 题目详情
已知抛物线的顶点为(0,4)且与x轴交于(-2,0),(2,0).

(1)直接写出抛物线解析式;
(2)如图,将抛物线向右平移k个单位,设平移后抛物线的顶点为D,与x轴的交点为A、B,与原抛物线的交点为P.
①当直线OD与以AB为直径的圆相切于E时,求此时k的值;
②是否存在这样的k值,使得点O、P、D三点恰好在同一条直线上?若存在,求出k值;若不存在,请说明理由.
【答案】分析:(1)由抛物线的顶点为(0,4),可设抛物线解析式为y=ax2+4,再将点(2,0)代入,求出a=-1,即可得到抛物线解析式为y=-x2+4;
(2)①连接CE,CD,先根据切线的性质得出CE⊥OD,再解Rt△CDE,得出∠EDC=30°,然后解Rt△CDO,得出OC=,则k=OC=
②设抛物线y=-x2+4向右平移k个单位后的解析式是y=-(x-k)2+4,它与y=-x2+4交于点P,先求出交点P的坐标是(,-k2+4),再利用待定系数法求出直线OD的解析式为y=x,然后将点P的坐标代入y=x,即可求出k的值.
解答:解:(1)∵抛物线的顶点为(0,4),
∴可设抛物线解析式为y=ax2+4,
又∵抛物线过点(2,0),
∴0=4a+4,解得a=-1,
∴抛物线解析式为y=-x2+4;

(2)①如图,连接CE,CD.
∵OD是⊙C的切线,∴CE⊥OD.
在Rt△CDE中,∠CED=90°,CE=AC=2,DC=4,
∴∠EDC=30°,
∴在Rt△CDO中,∠OCD=90°,CD=4,∠ODC=30°,
∴OC=
∴当直线OD与以AB为直径的圆相切时,k=OC=

②存在k=2,能够使得点O、P、D三点恰好在同一条直线上.理由如下:
设抛物线y=-x2+4向右平移k个单位后的解析式是y=-(x-k)2+4,它与y=-x2+4交于点P,
由-(x-k)2+4=-x2+4,解得x1=,x2=0(不合题意舍去),
当x=时,y=-k2+4,
∴点P的坐标是(,-k2+4).
设直线OD的解析式为y=mx,把D(k,4)代入,
得mk=4,解得m=
∴直线OD的解析式为y=x,
若点P(,-k2+4)在直线y=x上,得-k2+4=
解得k=±2(负值舍去),
∴当k=2时,O、P、D三点在同一条直线上.
点评:本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数、二次函数的解析式,抛物线平移的规律,直线与圆相切,解直角三角形,两函数交点坐标的求法,三点共线的条件,综合性较强,难度中等.其中(2)②除了可以将点P的坐标(,-k2+4)代入直线OD的解析式,建立关于k的方程外,还可以利用相似三角形对应边成比例列式求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;
(3)连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线的顶点为M(5,6),且经过点C(-1,0).
(1)求抛物线的解析式;
(2)设抛物线与y轴交于点A,过A作AB∥x轴,交抛物线于另一点B,则抛物线上存在点P,使△ABP的面积等于△ABO的面积,请求出所有符合条件的点P的坐标;
(3)将抛物线向右平移,使抛物线经过点(5,0),请直接答出曲线段CM(抛精英家教网物线图象的一部分,如图中的粗线所示)在平移过程中所扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,点D、E在x轴上,CF交y轴于点B(0,2),且其面积为8:
(1)此抛物线的解析式;
(2)如图2,若点P为所求抛物线上的一动点,试判断以点P为圆心,PB为半径的圆与x轴的位置关系,并说明理由.
(3)如图2,设点P在抛物线上且与点A不重合,直线PB与抛物线的另一个交点为Q,过点P、Q分别作x轴的垂线,垂足分别为N、M,连接PO、QO.求证:△QMO∽△PNO.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衡阳)如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O)
(1)求此抛物线的解析式.
(2)过点P作CB所在直线的垂线,垂足为点R,
①求证:PF=PR;
②是否存在点P,使得△PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由;
③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断△RSF的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线的顶点为(-1,-2),且通过(1,10),则这条抛物线的表达式为(  )

查看答案和解析>>

同步练习册答案