【题目】如图,二次函数的图象与轴交于点,与轴交于点,过点作轴,交抛物线于点,并过点作轴,垂足为.抛物线和反比例函数的图象都经过点,四边形的面积是.
求反比例函数、二次函数的解析式及抛物线的对称轴;
如图,点从点出发以每秒个单位的速度沿线段向点运动,点从点出发以相同的速度沿线段img src="http://thumb.zyjl.cn/questionBank/Upload/2019/05/12/08/1a8f9afd/SYS201905120854095644903087_ST/SYS201905120854095644903087_ST.023.png" width="24" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />向点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为秒.
①当为何值时,四边形为等腰梯形;
②设与对称轴的交点为,过点作轴的平行线交于点,设四边形的面积为,求面积关于时间的函数解析式,并指出的取值范围;当为何值时,有最大值或最小值.
【答案】 ,①当秒时,四边形为等腰梯形②当秒时,面积有最小值.
【解析】
(1)根据反比例函数的比例系数k的几何意义可求出k,从而可求出点B的坐标,然后运用待定系数法就可求出二次函数的解析式,由此可求出对称轴方程;
(2)①过点P作PE⊥OA,垂足为E,如图2,易证BC∥OA,要使四边形ABPQ为等腰梯形,只需PQ=AB,只需QE=AD=1,由此即可求出t的值;②如图2,易证△MFP≌△MGQ,则有MF=MG,从而可求出S△BPN(用t表示),然后只需求出S四边形ABPQ,并运用割补法就可得到S关于t的函数解析式,然后只需利用该函数的增减性就可解决问题.
如图,
∵四边形的面积是
,
∴,
∴反比例函数的解析式为.
∵反比例函数的图象经过点,
∴,
解得.
∴.
将点,代入,得
解得:,
∴二次函数的解析式.
则抛物线的对称轴为;①由题意可知:.
∵点,点的纵坐标相等,
∴.
过点作,垂足为,如图.
要使四边形为等腰梯形,只需.
即.
又,
∴.
解得,
∴当秒时,四边形为等腰梯形.
②设对称轴与、轴的交点分别为、,如图.
∵对称轴是线段的垂直平分线,
∴.
又∵,
∴.
∵,
∴.
在和中,
∴,
∴,
∴
.
∵
,
∴
.
∵,,
∴点运动到点时停止运动,需要秒,
∴.
∵,
∴当秒时,面积有最小值.
科目:初中数学 来源: 题型:
【题目】甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的个棋子组成轴对称图形,白棋的个棋子也成轴对称图形.则下列下子方法不正确的是( ),.
A. 黑(3,7);白(5,3) B. 黑(4,7);白(6,2)
C. 黑(2,7);白(5,3) D. 黑(3,7);白(2,6)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为24的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM绕点B逆时针旋转60°得到BN,连结HN.则在点M运动过程中,线段HN长度的最小值是( )
A. 12B. 6C. 3D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题探究:如图①,在四边形ABCD中,AB∥CD,E是BC的中点,AE是∠BAD的平分线,则线段AB,AD,DC之间的等量关系为 ;
(2)方法迁移:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,E是BC的中点,AE是∠BAF的平分线,试探究线段AB,AF,CF之间的等量关系,并证明你的结论;
(3)联想拓展:如图③,AB∥CF,E是BC的中点,点D在线段AE上,∠EDF=∠BAE,试探究线段AB,DF,CF之间的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着近几年我市私家车日越增多,超速行驶成为引发交通事故的主要原因之一.某中学数学活动小组为开展“文明驾驶、关爱家人、关爱他人”的活动,设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点,在笔直的车道上确定点,使和垂直,测得的长等于米,在上的同侧取点、,使,.
求、之间的路程(保留根号);
已知本路段对校车限速为米/秒若测得某校车从到用了秒,这辆校车是否超速?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系的原点是正方形的中心,顶点,的坐标分别为、,把正方形绕原点逆时针旋转得到正方形,则正方形与正方形重叠部分形成的正八边形的边长为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】课上老师呈现一个问题:
下面提供三种思路:
思路一:过点F作MN∥CD(如图甲);
思路二:过P作PN∥EF,交AB于点N;
思路三:过O作ON∥FG,交CD于点N.
解答下列问题:
(1)根据思路一(图甲),可求得∠EFG的度数为 ;
(2)根据思路二、三分别在图乙和图丙中作出符合要求的辅助线;
(3)请你从思路二、思路三中任选其中一种,写出求∠EFG度数的解答过程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com