1£®ÈçͼËùʾ£¬ÒÑÖª¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©µÄͼÏóÓëxÖá½»ÓÚA¡¢BÁ½µã£¬ÓëyÖá½»ÓÚµãC£¬ÆäÖÐA£¨-2£¬0£©£¬C£¨0£¬4£©£¬¶Ô³ÆÖáΪֱÏßx=1£¬¶¥µãΪE£®
£¨1£©ÇóÅ×ÎïÏ߶¥µãEµÄ×ø±ê£»
£¨2£©ÈôµãP£¨0£¬n£©ÎªyÖáÉÏÒ»¸ö¶¯µã£¬µ±PA+$\frac{\sqrt{5}}{5}$PC×îСʱ£¬´ËʱÅ×ÎïÏßÉÏÊÇ·ñ´æÔÚµãQ£¬Ê¹µÃ¡ÏQBA=¡ÏPBA£®ÈôÕâÑùµÄµãQ´æÔÚÇëÇó³öÆä×ø±ê£¬Èô²»´æÔÚÇë˵Ã÷ÀíÓÉ£®
£¨3£©Èçͼ2£¬Æ½ÒÆÅ×ÎïÏߣ¬Ê¹Å×ÎïÏߵĶ¥µãEÔÚÉäÏßAEÉÏÒƶ¯£¬µãEƽÒƺóµÄ¶ÔÓ¦µãΪµãE¡ä£¬µãAµÄ¶ÔÓ¦µãΪµãA¡ä£¬½«¡÷AOCÈƵãO˳ʱÕëÐýתÖÁ¡÷A1OC1µÄλÖ㬵ãA£¬CµÄ¶ÔÓ¦µã·Ö±ðΪµãA1£¬C1£¬ÇÒµãA1Ç¡ºÃÂäÔÚACÉÏ£¬Á¬½ÓC1A¡ä£¬C1E¡ä£¬¡÷A¡äC1E¡äÊÇ·ñÄÜΪµÈÑüÈý½ÇÐΣ¿ÈôÄÜ£¬ÇëÇó³öËùÓзûºÏÌõ¼þµÄµãE¡äµÄ×ø±ê£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Çó³öA¡¢B¡¢CÈýµã×ø±ê´úÈëy=ax2+bx+c£¬×ª»¯Îª½â·½³Ì×é¼´¿É£®
£¨2£©ÏÈÀûÓöԳƣ¬´¹Ï߶Î×î¶ÌÈ·¶¨µãPµÄλÖã¬ÔÙ¸ù¾ÝÌõ¼þÇó³öµãQµÄ×ø±ê¼´¿É£®
£¨3£©¡÷A¡äC1E¡äÊǵÈÑüÈý½ÇÐΣ¬·ÖÈýÖÖÇé¿ö·Ö±ð½¨Á¢·½³Ì¼ÆËã¼´¿É£®

½â´ð ½â£º£¨1£©¡ßA¡¢B¹ØÓÚ¶Ô³ÆÖáx=1¶Ô³Æ£¬A£¨-2£¬0£©£¬
¡àB£¨4£¬0£©£¬
°ÑA¡¢B¡¢CÈýµã×ø±ê´úÈëy=ax2+bx+cµÃ$\left\{\begin{array}{l}{c=4}\\{4a-2b+c=0}\\{16a+4b+c=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=1}\\{c=4}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=-$\frac{1}{2}$x2+x+4£¬¶¥µãE×ø±ê£¨1£¬$\frac{9}{2}$£©£®

£¨2£©´æÔÚ£®ÀíÓÉÈçÏ£º
Èçͼ1ÖУ¬×÷µãA¹ØÓÚyÖáµÄ¶Ô³ÆµãA¡ä£¬×÷A¡äG¡ÍACÓÚG½»OCÓÚP£¬Á¬½ÓAP£®

ÓÉ¡÷PCG¡×¡÷ACOµÃ$\frac{PG}{OA}$=$\frac{PC}{AC}$£¬
¡ßOA=2£¬OC=4£¬
¡àAC=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$£¬
¡à$\frac{PG}{2}$=$\frac{PC}{2\sqrt{5}}$£¬
¡àPG=$\frac{\sqrt{5}}{5}$PC£¬
¡àPA+$\frac{\sqrt{5}}{5}$PC=PA+PG=A¡äP+PG=A¡äG£¬
¸ù¾Ý´¹Ï߶Î×î¶Ì¿ÉÖª£¬µãP¼´ÎªËùÇóµÄµã£¬
ÓÉ¡÷AOP¡×¡÷COA¿ÉÖª£¬$\frac{OA}{CO}$=$\frac{OP}{OA}$£¬
¡à$\frac{2}{4}$=$\frac{OP}{2}$£¬
¡àOP=1£¬
¡àµãP×ø±êΪ£¨0£¬1£©£¬
Èçͼ2ÖУ¬ÑÓ³¤BP½»Å×ÎïÏßÓÚQ£¬´Ëʱ¡ÏQBA=¡ÏPBA£®

¡ßP£¨0£¬1£©£¬B£¨4£¬0£©£¬
¡àÖ±ÏßPQµÄ½âÎöʽΪy=-$\frac{1}{4}$x+1£¬
ÓÉ$\left\{\begin{array}{l}{y=-\frac{1}{4}x+1}\\{y=-\frac{1}{2}{x}^{2}+x+4}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-\frac{3}{2}}\\{y=\frac{11}{8}}\end{array}\right.$£¬
¡àµãQ£¨-$\frac{3}{2}$£¬$\frac{11}{8}$£©£¬
×÷P¹ØÓÚxÖáµÄ¶Ô³ÆµãP¡ä£¬Ö±ÏßBP¡ä½»Å×ÎïÏßÓÚQ¡ä£¬´Ëʱ¡ÏQ¡äBA=¡ÏPBA£¬
¡ßÖ±ÏßBP¡äµÄ½âÎöʽΪy=$\frac{1}{4}$x-1£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{1}{4}x-1}\\{y=-\frac{1}{2}{x}^{2}+x+4}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-\frac{5}{2}}\\{y=-\frac{13}{8}}\end{array}\right.$£¬
¡àµãQ¡ä×ø±êΪ£¨-$\frac{5}{2}$£¬-$\frac{13}{8}$£©£¬
×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄµãQ×ø±ê£¨-$\frac{3}{2}$£¬$\frac{11}{8}$£©»ò£¨-$\frac{5}{2}$£¬-$\frac{13}{8}$£©£®

£¨3£©Èçͼ3ÖУ¬×÷A1M¡ÍABÓÚM£¬C1N¡ÍABÓÚN£¬ÉèAM=xÔòA1M=2x£¬

ÔÚRt¡÷AOM1ÖУ¬¡ßOA12=OM2+A1M2£¬
¡à4x2+£¨2-x£©2=4£¬
¡àx=$\frac{4}{5}$£¬
¡àA1M=$\frac{8}{5}$£¬OM=$\frac{6}{5}$£¬
ÓÉ¡÷OA1M¡×¡÷C1OB£¬
¡à$\frac{{A}_{1}M}{ON}$=$\frac{OM}{{C}_{1}N}$=$\frac{O{A}_{1}}{O{C}_{1}}$=$\frac{1}{2}$£¬
¡àOB=$\frac{16}{5}$£¬C1N=$\frac{12}{5}$£¬
¡àC1£¨$\frac{16}{5}$£¬$\frac{12}{5}$£©£¬
¡ßµãA£¨-2£¬0£©£¬E£¨1£¬$\frac{9}{2}$£©£¬
¡àAE=5£¬
¡àA¡äE¡ä=AE=$\frac{3\sqrt{13}}{2}$£¬
¡ßÖ±ÏßAEµÄ½âÎöʽΪy=$\frac{3}{2}$x+3£¬
ÉèµãE¡ä£¨a£¬$\frac{3}{2}$a+3£©£¬
¡ßµãE¡äÏòÏÂƽÒÆ$\frac{9}{2}$¸öµ¥Î»£¬Ïò×óƽÒÆ3¸öµ¥Î»µÃµ½A¡ä£¬
¡àA¡ä£¨a-3£¬$\frac{3}{2}$a-$\frac{3}{2}$£©£¬
¡àC1E¡ä2=£¨$\frac{16}{5}$-a£©2+£¨$\frac{12}{5}$-$\frac{3}{2}$a-3£©2£¬
C1A¡ä2=£¨$\frac{16}{5}$-a+3£©2+£¨$\frac{12}{5}$-$\frac{3}{2}$a+$\frac{3}{2}$£©2£¬
¢ÙÈôC1A¡ä=C1E¡ä£¬ÔòC1A¡ä2=C1E¡ä2
¼´£º£¨$\frac{16}{5}$-a£©2+£¨$\frac{12}{5}$-$\frac{3}{2}$a-3£©2=£¨$\frac{16}{5}$-a+3£©2+£¨$\frac{12}{5}$-$\frac{3}{2}$a+$\frac{3}{2}$£©2£¬
½âµÃa=$\frac{287}{130}$£¬
¡àE¡ä£¨$\frac{287}{130}$£¬$\frac{1641}{260}$£©£®

¢ÚÈôA¡äC1=A¡äE¡ä£¬
¡àA¡äC12=A¡äE¡ä2
¼´£¨$\frac{16}{5}$-a+3£©2+£¨$\frac{12}{5}$-$\frac{3}{2}$a+$\frac{3}{2}$£©2=$\frac{117}{4}$£¬
ÕûÀíµÃ65a2-482a+488=0£¬
½âµÃa=$\frac{241¡À3\sqrt{2929}}{65}$£¬
¡àµãEµÄ×ø±êΪ£¨$\frac{241+3\sqrt{2929}}{65}$£¬$\frac{1113+9\sqrt{2929}}{130}$£©»ò£¨$\frac{241-3\sqrt{2929}}{65}$£¬$\frac{1113-9\sqrt{2929}}{130}$£©£®
¢ÛÈôE¡äA¡ä=E¡äC1£¬
¡àE¡äA¡ä2=E¡äC12
¼´£¨$\frac{16}{5}$-a£©2+£¨$\frac{12}{5}$-$\frac{3}{2}$a-3£©2=$\frac{117}{4}$£¬
½âµÃa=$\frac{64¡À9\sqrt{321}}{65}$£¬
¡àµãE×ø±êΪ£¨$\frac{64+9\sqrt{321}}{65}$£¬$\frac{582+27\sqrt{321}}{130}$£©»ò£¨$\frac{64-9\sqrt{321}}{65}$£¬$\frac{582-27\sqrt{321}}{130}$£©£¬
×ÛÉÏËùÊö£¬·ûºÏÌõ¼þµÄµãE×ø±êΪ£¨$\frac{287}{130}$£¬$\frac{1641}{260}$£©»ò£¨$\frac{241+3\sqrt{2929}}{65}$£¬$\frac{1113+9\sqrt{2929}}{130}$£©»ò£¨$\frac{241-3\sqrt{2929}}{65}$£¬$\frac{1113-9\sqrt{2929}}{130}$£©»ò£¨$\frac{64+9\sqrt{321}}{65}$£¬$\frac{582+27\sqrt{321}}{130}$£©»ò£¨$\frac{64-9\sqrt{321}}{65}$£¬$\frac{582-27\sqrt{321}}{130}$£©£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯ÊýµÄÓ¦Óá¢Ò»´Îº¯ÊýµÄÓ¦ÓᢵȱßÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢¹´¹É¶¨Àí¡¢µÈÑüÈý½ÇÐεÄÐÔÖʵÈ֪ʶ£¬½â±¾ÌâµÄ¹Ø¼üÊÇѧ»áÓ÷ÖÀàÌÖÂÛµÄ˼Ïë˼¿¼ÎÊÌ⣬ѧ»áÓù¹½¨·½³Ì½â¾öÎÊÌ⣬±¾ÌâµÄ¼ÆËãÁ¿±È½Ï´ó£¬ÊýÖµ±È½Ï´ó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®¼×¡¢ÒÒÁ½Î»Í¬Ñ§ÔÚѧÍê¾ø¶ÔÖµÓëÏà·´ÊýÒÔºó£¬×ܽáÁËÕâÑù¼¸¸ö½áÂÛ£º
¢ÙÏà·´ÊýµÈÓÚËü±¾ÉíµÄÊýÊÇ0£»
¢Ú¾ø¶ÔÖµ×îСµÄÓÐÀíÊýÊÇ0£»
¢ÛÖ»ÓÐ0µÄ¾ø¶ÔÖµÊÇËü±¾Éí£»  
¢ÜÒ»¸öÊýµÄ¾ø¶ÔÖµ×ܱÈËüµÄÏà·´Êý´ó£®
ÄãÈÏΪÕýÈ·µÄÓУ¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®OA¡¢OB¡¢OCÊÇ´Óͬһ¶ËµãOÒý³öµÄÈýÌõ²»Í¬ÉäÏߣ¬ÒÑÖª¡ÏAOB=60¡ã£¬¡ÏBOC=20¡ã£¬ÇëÄã»­³öͼÐΣ¬²¢Çó³ö¡ÏAOCµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ1£¬Å×ÎïÏßy=ax2+bx-4a¾­¹ýA£¨-1£¬0£©¡¢C£¨0£¬4£©Á½µã£¬ÓëxÖá½»ÓÚÁíÒ»µãB£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÒÑÖªµãD£¨m£¬m+1£©ÔÚµÚÒ»ÏóÏÞµÄÅ×ÎïÏßÉÏ£¬ÇóµãD¹ØÓÚÖ±ÏßBC¶Ô³ÆµÄµãµÄ×ø±ê£»
£¨3£©Èçͼ3£¬ÈôÅ×ÎïÏߵĶԳÆÖáEF£¨EΪÅ×ÎïÏ߶¥µã£©ÓëÖ±ÏßBCÏཻÓÚµãF£¬MΪֱÏßBCÉϵÄÈÎÒâÒ»µã£¬¹ýµãM×÷MN¡ÎEF½»Å×ÎïÏßÓÚµãN£¬ÒÔE£¬F£¬M£¬NΪ¶¥µãµÄËıßÐÎÄÜ·ñΪƽÐÐËıßÐΣ¿ÈôÄÜ£¬ÇóµãNµÄ×ø±ê£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÏÂÁÐÊÇÒ»Ôª¶þ´Î·½³ÌµÄÓжàÉÙ¸ö£¨¡¡¡¡£©
¢Ù£¨x+1£©£¨x-2£©=3£»¢Úax2+bx+c=0£»¢Û3£¨x-1£©2=3x2+2x£»¢Ü$\sqrt{{x}^{2}}$-1=0£»¢Ýx2+y+4=0£®
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁжþ´Îº¯ÊýµÄͼÏóÖо­¹ýÔ­µãµÄÊÇ£¨¡¡¡¡£©
A£®y=x2+1B£®y=2x2+5xC£®y=£¨x-2£©2D£®y=x2+2x-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖª¹ØÓÚxµÄ·½³Ì$\frac{1}{2}$£¨1-x£©=k+1µÄ½âÓë·½³Ì$\frac{2}{5}$£¨3x+2£©=$\frac{k}{10}$+$\frac{3}{2}$£¨x-1£©µÄ½â»¥ÎªÏà·´Êý£¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÏÂÁÐÅжÏÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®0.25µÄƽ·½¸ùÊÇ0.5B£®-8ÊÇ-64µÄÒ»¸öÁ¢·½¸ù
C£®£¨$\sqrt{5}$£©2µÄƽ·½¸ùÊÇ¡À$\sqrt{5}$D£®-1ÊÇ1µÄËãÊõƽ·½¸ù

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔĶÁÏÂÁвÄÁϲ¢½â¾öºóÃæµÄÎÊÌ⣮
²ÄÁÏÒ»£ºÔÚÈñ½Ç¡÷ABCÖУ¬¡ÏA¡¢¡ÏB¡¢¡ÏCµÄ¶Ô±ß·Ö±ðÊÇa¡¢b¡¢c£¬¹ýA×÷AD¡ÍBCÓÚD£¨Èçͼ£©£¬ÔòsinB=$\frac{AD}{c}$£¬sinC=$\frac{AD}{b}$£¬¼´AD=csinB£¬AD=bsinC£¬ÓÚÊÇcsinB=bsinC£¬¼´$\frac{b}{sinB}$=$\frac{c}{sinC}$£®Í¬ÀíÓУº$\frac{c}{sinC}$=$\frac{a}{sinA}$£¬$\frac{a}{sinA}$=$\frac{b}{sinB}$£¬ËùÒÔ $\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$¡­£¨¡ù£©£®
¼´ÔÚÒ»¸öÈý½ÇÐÎÖУ¬¸÷±ßºÍËüËù¶Ô½ÇµÄÕýÏҵıÈÏàµÈ£¬Í¬ÑùµØ£¬ÎÒÃÇ»¹¿ÉÒÔÖ¤Ã÷ÔÚÈÎÒâµÄÈý½ÇÐÎÖУ¬ÉÏÊö½áÂÛÒ²³ÉÁ¢£®
²ÄÁ϶þ£ºÔÚÈñ½Ç¡÷ABCÖУ¬¡ÏA¡¢¡ÏB¡¢¡ÏCµÄ¶Ô±ß·Ö±ðÊÇa¡¢b¡¢c£¬¡÷ABCµÄÍâ½ÓÔ²°ë¾¶ÎªR£¬Ôò $\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=2R£®
ÎÊÌ⣺ÒÑÖªa£¬b£¬c·Ö±ðΪ¡÷ABCµÄ½ÇA£¬B£¬CµÄ¶ÔÓ¦±ß£¬
¢Ù£¨b+c£©£º£¨a+c£©£º£¨a+b£©=4£º5£º6£¬ÔòsinA£ºsinB£ºsinC=7£º5£º3£»
¢ÚÈôA=60¡ã£¬a=$\sqrt{3}$£¬Ôò$\frac{a+b+c}{sinA+sinB+sinC}$=2£»
¢ÛÈôbcosA=acosB£¬Åжϡ÷ABCÊǵÈÑüÈý½ÇÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸