·ÖÎö £¨1£©Çó³öA¡¢B¡¢CÈýµã×ø±ê´úÈëy=ax2+bx+c£¬×ª»¯Îª½â·½³Ì×é¼´¿É£®
£¨2£©ÏÈÀûÓöԳƣ¬´¹Ï߶Î×î¶ÌÈ·¶¨µãPµÄλÖã¬ÔÙ¸ù¾ÝÌõ¼þÇó³öµãQµÄ×ø±ê¼´¿É£®
£¨3£©¡÷A¡äC1E¡äÊǵÈÑüÈý½ÇÐΣ¬·ÖÈýÖÖÇé¿ö·Ö±ð½¨Á¢·½³Ì¼ÆËã¼´¿É£®
½â´ð ½â£º£¨1£©¡ßA¡¢B¹ØÓÚ¶Ô³ÆÖáx=1¶Ô³Æ£¬A£¨-2£¬0£©£¬
¡àB£¨4£¬0£©£¬
°ÑA¡¢B¡¢CÈýµã×ø±ê´úÈëy=ax2+bx+cµÃ$\left\{\begin{array}{l}{c=4}\\{4a-2b+c=0}\\{16a+4b+c=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=-\frac{1}{2}}\\{b=1}\\{c=4}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=-$\frac{1}{2}$x2+x+4£¬¶¥µãE×ø±ê£¨1£¬$\frac{9}{2}$£©£®
£¨2£©´æÔÚ£®ÀíÓÉÈçÏ£º
Èçͼ1ÖУ¬×÷µãA¹ØÓÚyÖáµÄ¶Ô³ÆµãA¡ä£¬×÷A¡äG¡ÍACÓÚG½»OCÓÚP£¬Á¬½ÓAP£®
ÓÉ¡÷PCG¡×¡÷ACOµÃ$\frac{PG}{OA}$=$\frac{PC}{AC}$£¬
¡ßOA=2£¬OC=4£¬
¡àAC=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$£¬
¡à$\frac{PG}{2}$=$\frac{PC}{2\sqrt{5}}$£¬
¡àPG=$\frac{\sqrt{5}}{5}$PC£¬
¡àPA+$\frac{\sqrt{5}}{5}$PC=PA+PG=A¡äP+PG=A¡äG£¬
¸ù¾Ý´¹Ï߶Î×î¶Ì¿ÉÖª£¬µãP¼´ÎªËùÇóµÄµã£¬
ÓÉ¡÷AOP¡×¡÷COA¿ÉÖª£¬$\frac{OA}{CO}$=$\frac{OP}{OA}$£¬
¡à$\frac{2}{4}$=$\frac{OP}{2}$£¬
¡àOP=1£¬
¡àµãP×ø±êΪ£¨0£¬1£©£¬
Èçͼ2ÖУ¬ÑÓ³¤BP½»Å×ÎïÏßÓÚQ£¬´Ëʱ¡ÏQBA=¡ÏPBA£®
¡ßP£¨0£¬1£©£¬B£¨4£¬0£©£¬
¡àÖ±ÏßPQµÄ½âÎöʽΪy=-$\frac{1}{4}$x+1£¬
ÓÉ$\left\{\begin{array}{l}{y=-\frac{1}{4}x+1}\\{y=-\frac{1}{2}{x}^{2}+x+4}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-\frac{3}{2}}\\{y=\frac{11}{8}}\end{array}\right.$£¬
¡àµãQ£¨-$\frac{3}{2}$£¬$\frac{11}{8}$£©£¬
×÷P¹ØÓÚxÖáµÄ¶Ô³ÆµãP¡ä£¬Ö±ÏßBP¡ä½»Å×ÎïÏßÓÚQ¡ä£¬´Ëʱ¡ÏQ¡äBA=¡ÏPBA£¬
¡ßÖ±ÏßBP¡äµÄ½âÎöʽΪy=$\frac{1}{4}$x-1£¬
ÓÉ$\left\{\begin{array}{l}{y=\frac{1}{4}x-1}\\{y=-\frac{1}{2}{x}^{2}+x+4}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=4}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=-\frac{5}{2}}\\{y=-\frac{13}{8}}\end{array}\right.$£¬
¡àµãQ¡ä×ø±êΪ£¨-$\frac{5}{2}$£¬-$\frac{13}{8}$£©£¬
×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄµãQ×ø±ê£¨-$\frac{3}{2}$£¬$\frac{11}{8}$£©»ò£¨-$\frac{5}{2}$£¬-$\frac{13}{8}$£©£®
£¨3£©Èçͼ3ÖУ¬×÷A1M¡ÍABÓÚM£¬C1N¡ÍABÓÚN£¬ÉèAM=xÔòA1M=2x£¬
ÔÚRt¡÷AOM1ÖУ¬¡ßOA12=OM2+A1M2£¬
¡à4x2+£¨2-x£©2=4£¬
¡àx=$\frac{4}{5}$£¬
¡àA1M=$\frac{8}{5}$£¬OM=$\frac{6}{5}$£¬
ÓÉ¡÷OA1M¡×¡÷C1OB£¬
¡à$\frac{{A}_{1}M}{ON}$=$\frac{OM}{{C}_{1}N}$=$\frac{O{A}_{1}}{O{C}_{1}}$=$\frac{1}{2}$£¬
¡àOB=$\frac{16}{5}$£¬C1N=$\frac{12}{5}$£¬
¡àC1£¨$\frac{16}{5}$£¬$\frac{12}{5}$£©£¬
¡ßµãA£¨-2£¬0£©£¬E£¨1£¬$\frac{9}{2}$£©£¬
¡àAE=5£¬
¡àA¡äE¡ä=AE=$\frac{3\sqrt{13}}{2}$£¬
¡ßÖ±ÏßAEµÄ½âÎöʽΪy=$\frac{3}{2}$x+3£¬
ÉèµãE¡ä£¨a£¬$\frac{3}{2}$a+3£©£¬
¡ßµãE¡äÏòÏÂƽÒÆ$\frac{9}{2}$¸öµ¥Î»£¬Ïò×óƽÒÆ3¸öµ¥Î»µÃµ½A¡ä£¬
¡àA¡ä£¨a-3£¬$\frac{3}{2}$a-$\frac{3}{2}$£©£¬
¡àC1E¡ä2=£¨$\frac{16}{5}$-a£©2+£¨$\frac{12}{5}$-$\frac{3}{2}$a-3£©2£¬
C1A¡ä2=£¨$\frac{16}{5}$-a+3£©2+£¨$\frac{12}{5}$-$\frac{3}{2}$a+$\frac{3}{2}$£©2£¬
¢ÙÈôC1A¡ä=C1E¡ä£¬ÔòC1A¡ä2=C1E¡ä2
¼´£º£¨$\frac{16}{5}$-a£©2+£¨$\frac{12}{5}$-$\frac{3}{2}$a-3£©2=£¨$\frac{16}{5}$-a+3£©2+£¨$\frac{12}{5}$-$\frac{3}{2}$a+$\frac{3}{2}$£©2£¬
½âµÃa=$\frac{287}{130}$£¬
¡àE¡ä£¨$\frac{287}{130}$£¬$\frac{1641}{260}$£©£®
¢ÚÈôA¡äC1=A¡äE¡ä£¬
¡àA¡äC12=A¡äE¡ä2
¼´£¨$\frac{16}{5}$-a+3£©2+£¨$\frac{12}{5}$-$\frac{3}{2}$a+$\frac{3}{2}$£©2=$\frac{117}{4}$£¬
ÕûÀíµÃ65a2-482a+488=0£¬
½âµÃa=$\frac{241¡À3\sqrt{2929}}{65}$£¬
¡àµãEµÄ×ø±êΪ£¨$\frac{241+3\sqrt{2929}}{65}$£¬$\frac{1113+9\sqrt{2929}}{130}$£©»ò£¨$\frac{241-3\sqrt{2929}}{65}$£¬$\frac{1113-9\sqrt{2929}}{130}$£©£®
¢ÛÈôE¡äA¡ä=E¡äC1£¬
¡àE¡äA¡ä2=E¡äC12
¼´£¨$\frac{16}{5}$-a£©2+£¨$\frac{12}{5}$-$\frac{3}{2}$a-3£©2=$\frac{117}{4}$£¬
½âµÃa=$\frac{64¡À9\sqrt{321}}{65}$£¬
¡àµãE×ø±êΪ£¨$\frac{64+9\sqrt{321}}{65}$£¬$\frac{582+27\sqrt{321}}{130}$£©»ò£¨$\frac{64-9\sqrt{321}}{65}$£¬$\frac{582-27\sqrt{321}}{130}$£©£¬
×ÛÉÏËùÊö£¬·ûºÏÌõ¼þµÄµãE×ø±êΪ£¨$\frac{287}{130}$£¬$\frac{1641}{260}$£©»ò£¨$\frac{241+3\sqrt{2929}}{65}$£¬$\frac{1113+9\sqrt{2929}}{130}$£©»ò£¨$\frac{241-3\sqrt{2929}}{65}$£¬$\frac{1113-9\sqrt{2929}}{130}$£©»ò£¨$\frac{64+9\sqrt{321}}{65}$£¬$\frac{582+27\sqrt{321}}{130}$£©»ò£¨$\frac{64-9\sqrt{321}}{65}$£¬$\frac{582-27\sqrt{321}}{130}$£©£®
µãÆÀ ±¾Ì⿼²é¶þ´Îº¯ÊýµÄÓ¦Óá¢Ò»´Îº¯ÊýµÄÓ¦ÓᢵȱßÈý½ÇÐεÄÅж¨ºÍÐÔÖÊ¡¢¹´¹É¶¨Àí¡¢µÈÑüÈý½ÇÐεÄÐÔÖʵÈ֪ʶ£¬½â±¾ÌâµÄ¹Ø¼üÊÇѧ»áÓ÷ÖÀàÌÖÂÛµÄ˼Ïë˼¿¼ÎÊÌ⣬ѧ»áÓù¹½¨·½³Ì½â¾öÎÊÌ⣬±¾ÌâµÄ¼ÆËãÁ¿±È½Ï´ó£¬ÊýÖµ±È½Ï´ó£®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | y=x2+1 | B£® | y=2x2+5x | C£® | y=£¨x-2£©2 | D£® | y=x2+2x-3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 0.25µÄƽ·½¸ùÊÇ0.5 | B£® | -8ÊÇ-64µÄÒ»¸öÁ¢·½¸ù | ||
C£® | £¨$\sqrt{5}$£©2µÄƽ·½¸ùÊÇ¡À$\sqrt{5}$ | D£® | -1ÊÇ1µÄËãÊõƽ·½¸ù |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com