精英家教网 > 初中数学 > 题目详情

如图,一次函数y1=k1x+2与反比例函数y2的图象交于点A (4,m)和B(-8,-2),与y轴交于点C

1.k1=_______,k2=______

2.根据函数图象可知,当y1>y2时,x的取值范围是______.

3.过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S四边形ODAC:S△CE=3:1时,求点P的坐标

 

【答案】

 

1.k1= ,k2=16

2.-8<x<0或x>4  (3)(4,2)

3.P(4√2,2√2)

 【解析】(1) 16  (2)-8<x<0或x>4  (3)(4,2)

解:因为一次函数y1=k1x+2与反比例函数y2的图象交于点A (4,m)和B(-8,-2)

所以联立方程组,则有k1x+2=,即k1x2+2x= k2,即k1x2+2x- k2=0

所以,则有4+(-8)= -,4 (-8)=

解得:k1= ,k2=16

(2)由上一问可知,y1>y2,即k1x+2>

解得

解得:-8<x<0或x>4

解:连接OP,交AD于点E

把B(-8,-2)带入y1=k1x+2,得

-2=-8k1+2

k1=1/2

∴y1=1/2x+2

当x=0时,y=2

∴C(0,2)

把点B(-8,-2)带入y2=k2/x,得

 k2=16 ∴y2=16/x

再把点A(4,m)带入y2=16/x,得

m=4

∴A(4,4)

S四边形ODAC=1/2X(OC+AD)XOD

=1/2X(2+4)X4

   =12

又∵S四边形ODAC:S△ODE=3:1

   ∴S△ODE=1/2XODXDE=1/2X4XDE=12X1/3,DE=2

   ∴E(4,2)设直线OE的函数解析式为y=kx(k≠0)

∴2=4k, k=1/2∴y=1/2x

∴  y=1/2x,y2=16/x

解得x=4√2    y=2√2

∴P(4√2,2√2)

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,一次函数y1=k1x+2与反比例函数y2的图象交于点A (4,m)和B(-8,-2),与y轴交于点C

1.k1=_______,k2=______

2.根据函数图象可知,当y1>y2时,x的取值范围是______.

3.过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S四边形ODAC:S△CE=3:1时,求点P的坐标

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y1ax+2与反比例函数y2的图象交于点A(4,m)和B(-8,-2),与y轴交于点C,与x轴交于点D

(1)求ak的值;

(2)过点AAEx轴于点E,若P为反比例函数图象的位于第一象限部分上的一点,且直线OP分△ADE所得的两部分面积之比为2∶7.请求出所有符合条件的点P的坐标;

(3)在(2)的条件下,请在x轴上找一点Q,使得△PQC的周长最小,并求出点Q的坐标.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A﹙-2,-5﹚,C﹙5,n﹚,

(1)求反比例函数y2=和一次函数y1=kx+b的表达式;

(2)观察图象,写出使函数值的自变量的取值范围

 

查看答案和解析>>

科目:初中数学 来源:2013届江苏省崇安区八年级下学期期中考试数学卷(一)(解析版) 题型:解答题

如图,一次函数y1ax+2与反比例函数y2的图象交于点A(4,m)和B(-8,-2),与y轴交于点C,与x轴交于点D

(1)求ak的值;

(2)过点AAEx轴于点E,若P为反比例函数图象的位于第一象限部分上的一点,且直线OP分△ADE所得的两部分面积之比为2∶7.请求出所有符合条件的点P的坐标;

(3)在(2)的条件下,请在x轴上找一点Q,使得△PQC的周长最小,并求出点Q的坐标.

 

查看答案和解析>>

同步练习册答案