精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2-2x+c与它的对称轴相交于点A(1,-4),与y轴交于C,与x轴正半轴交于B.
(1)求这条抛物线的函数关系式;
(2)设直线AC交x轴于D,P是线段AD上一动点(P点异于A,D),过P作PEx轴交直线AB于E,过E作EF⊥x轴于F,求当四边形OPEF的面积等于
7
2
时点P的坐标.
(1)由题意,知点A(1,-4)是抛物线的顶点,
-
-2
2a
=1
-4=a-2+c

∴a=1,c=-3,
∴抛物线的函数关系式为y=x2-2x-3.

(2)由(1)知,点C的坐标是(0,-3).
设直线AC的函数关系式为y=kx+b,
b=-3
-4=k+b

∴b=-3,k=-1,
∴y=-x-3.
由y=x2-2x-3=0,得x1=-1,x2=3,
∴点B的坐标是(3,0).
设直线AB的函数关系式是y=mx+n,
3m+n=0
m+n=-4
解得m=2,n=-6.
∴直线AB的函数关系式是y=2x-6.
设P点坐标为(xP,yP),则yP=-xP-3.
∵PEx轴,
∴E点的纵坐标也是-xP-3.
设E点坐标为(xE,yE),
∵点E在直线AB上,
∴-xP-3=2xE-6,
∴xE=
3-xP
2

∵EF⊥x轴,
∴F点的坐标为(
3-xP
2
,0),
∴PE=xE-xP=
3-3xP
2
,OF=
3-xP
2
,EF=-(-xP-3)=xP+3,
∴S四边形OPEF=
1
2
(PE+OF)•EF=
1
2
3-3xP
2
+
3-xP
2
)•(xP+3)=
7
2

2xP2+3xP-2=0,
∴xP=-2,xP=
1
2

当y=0时,x=-3,
而-3<-2<1,-3<
1
2
<1

∴P点坐标为(
1
2
,-
7
2
)
和(-2,-1)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数图象的顶点在原点O,对称轴为y轴.一次函数y=kx+1的图象与二次函数的图象交于A,B两点(A在B的左侧),且A点坐标为(-4,4).平行于x轴的直线l过(0,-1)点.
(1)求一次函数与二次函数的解析式;
(2)判断以线段AB为直径的圆与直线l的位置关系,并给出证明;
(3)把二次函数的图象向右平移2个单位,再向下平移t个单位(t>0),二次函数的图象与x轴交于M,N两点,一次函数图象交y轴于F点.当t为何值时,过F,M,N三点的圆的面积最小,最小面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,四边形ABCD满足,CDAB,且A、B在x轴上,点D(0,6),若tan∠DAO=2,AB:AO=1:1.
(1)A点坐标为(______),B点坐标为(______);
(2)求过A、B、D三点的抛物线方程;
(3)若(2)中抛物线过点C,求C点坐标;
(4)若动点P从点C出发沿C?B?x正方向,同时Q点从点A出发沿A?B?C方向(终点C)运动,且P、Q两点运动速度分别为
5
个单位/秒,1个单位/秒,若设运动时间为x秒,试探索△BPQ的形状,并说明相应x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,AO.
(1)求点A的坐标;
(2)以点A、B、O、P为顶点构造直角梯形,请求一个满足条件的顶点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=
1
2
mx2-
3
2
mx-2m交x轴于A(x1,0),B(x2,0)交y轴负半轴于C点,且x1<0<x2,(AO+OB)2=12CO+1.
(1)求抛物线的解析式;
(2)在x轴的下方是否存在着抛物线上的点P,使∠APB为锐角?若存在,求出P点的横坐标的范围;若不存在,请说明理由.
(3)如图点E(2,-5),将直线CE向上平移a个单位与抛物线交于M,N两点,若AM=AN,求a的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2-2x+a(a>0)与y轴相交于点A,顶点为M.直线y=
1
2
x+
1
2
a
与x轴相交于B点,与直线AM相交于N点;直线AM与x轴相交于C点
(1)求M的坐标与MA的解析式(用字母a表示);
(2)如图,将△NBC沿x轴翻折,若N点的对应点N′恰好落在抛物线上,求a的值;
(3)在抛物线y=-x2-2x+a(a>0)上是否存在一点P,使得以P、B、C、N为顶点的四边形是平行四边形?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.75x,同时预计年销售量增加的比例为0.6x.
(1)求本年度预计的年利润y与投入成本增加的比例x的关系式;
(2)为使本年度的利润比上一年有所增加,投入成本增加的比例应在什么范围?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一个中学生推铅球,铅球在点A处出手,在点B处落地,它的运行路线是一条抛物线,在平面直角坐标系中,这条抛物线的解析式为:y=-
1
12
x2+
2
3
x+
5
3

(1)请用配方法把y=-
1
12
x2+
2
3
x+
5
3
化成y=a(x-h)2+k的形式.
(2)求出铅球在运行过程中到达最高点时离地面的距离和这个学生推铅球的成绩.(单位:米)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某商店从厂家一每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售为x元,则可卖出(350-10x)件商品,那商品所赚钱y元与售价x元的函数关系为(  )
A.y=-10x2-560x+7350B.y=-10x2+560x-7350
C.y=-10x2+350xD.y=-10x2+350x-7350

查看答案和解析>>

同步练习册答案