精英家教网 > 初中数学 > 题目详情
(1)在Rt△ABC中,BC=3,AB=4,则AC=______.
(2)如图,在Rt△ABC中,∠ABC=90°,BC=3cm,AB=4cm.若点P从点B出发,以2cm/s的速度在BC所在的直线上运动.设点P的运动时间为t,试求当t为何值时,△ACP是等腰三角形?
(1)∵Rt△ABC中,BC=3,AB=4,
∴当AC为斜边则:AC=
32+42
=5,
当AB为斜边则:AC=
42-32
=
7

故答案为:5或
7


(2)∵∠ABC=90°,BC=3cm,AB=4cm,
∴AC=5cm,
当CP=CA时,2t=8或2t=2,
解得:t=4或1,
当AP=AC时,2t=3,
解得:t=
3
2

当PA=PC时,(2t+3)2=(2t)2+42
解得:t=
7
12
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,且AB=3,BC=2
3
,直线y=
3
x-2
3
经过点C,交y轴于点G.
(1)点C、D的坐标;
(2)求顶点在直线y=
3
x-2
3
上且经过点C、D的抛物线的解析式;
(3)将(2)中的抛物线沿直线y=
3
x-2
3
平移,平移后的抛物线交y轴于点F,顶点为点E.平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=
1
2
mx2-
3
2
mx-2m交x轴于A(x1,0),B(x2,0)交y轴负半轴于C点,且x1<0<x2,(AO+OB)2=12CO+1.
(1)求抛物线的解析式;
(2)在x轴的下方是否存在着抛物线上的点P,使∠APB为锐角?若存在,求出P点的横坐标的范围;若不存在,请说明理由.
(3)如图点E(2,-5),将直线CE向上平移a个单位与抛物线交于M,N两点,若AM=AN,求a的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=ax2+bx+c当x=-2时有最大值4,且二次函数图象与直线y=x+1的一个交点为P(m,0),求:
(1)m的值;
(2)二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c经过点A(-1,0)、B(3,0)和C(0,-3),线段BC与抛物线的对称轴相交于点P.M、N分别是线段OC和x轴上的动点,运动时保持∠MPN=90°不变.连结MN,设MC=m.
(1)求抛物线的函数解析式;
(2)用含m的代数式表示△PMN的面积S,并求S的最大值;
(3)以PM、PN为一组邻边作矩形PMDN,当此矩形全部落在抛物线与x轴围成的封闭区域内(含边界)时,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,图①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5根支柱A1B1、A2B2、A3B3、A4B4、A5B5之间的距离均为15m,B1B5A1A5,将抛物线放在图②所示的直角坐标系中.
(1)直接写出图②中点B1、B3、B5的坐标;
(2)求图②中抛物线的函数表达式;
(3)求图①中支柱A2B2、A4B4的长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在一大片空地上有一堵墙(线段AB),现有铁栏杆40m,准备充分利用这堵墙建造一个封闭的矩形花圃.
(1)如果墙足够长,那么应如何设计可使矩形花圃的面积最大?
(2)如果墙AB=8m,那么又要如何设计可使矩形花圃的面积最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

养鸡专业户小李要建一个露天养鸡场,鸡场的一边靠墙(墙足够长),其他边用竹篱笆围成,竹篱笆的长为40m,读九年级的儿子小军为他设计了如下方案:如图,把养鸡场围成等腰梯形ABCD,且∠ABC=120°.
(1)当AB为何值时,所围的面积是132
3
m2

(2)当AB为何值时,所围的面积最大?

查看答案和解析>>

同步练习册答案