精英家教网 > 初中数学 > 题目详情
已知△ABC中,AC=BC,AD平分∠BAC交BC于D,点E为AB上一点,且∠EDB=∠B,现有下列两个结论:①AB=AD+CD ②AB=AC+CD.
(1)如图1,若∠C=90°,则结论
成立,并证明你的结论.
(2)如图2,若∠C=100°,则结论
成立,并证明你的结论.
分析:(1)由∠C=90°,AC=BC得到∠B=45°,再由∠EDB=∠B得到∠DEB=90°,BE=DE,即DE⊥AB,根据角平分线的性质得到DE=DC,然后利用“HL”可证明Rt△ACD≌Rt△AED,则AC=AE,于是AB=AE+BE=AC+CD;
(2)由∠C=100°,AC=BC得到∠B=∠CAB=40°,再由∠EDB=∠B得到∠DEB=100°,BE=DE,则∠AED=80°,然后根据角平分线的定义得∠DAE=20°,于是利用三角形内角和定理可计算出∠ADE=80°,所以AD=AE,于是AB=AE+BE=AD+CD.
解答:解:(1)∵∠C=90°,AC=BC,
∴∠B=45°,
∵∠EDB=∠B,
∴∠DEB=90°,BE=DE,
∴DE⊥AB,
∵AD平分∠BAC,
∴DE=DC,
在Rt△ACD和Rt△AED中
AD=AD
DC=DE

∴Rt△ACD≌Rt△AED(HL),
∴AC=AE,
∴AB=AE+BE=AC+CD,所以②正确;

(2)∵∠C=100°,AC=BC,
∴∠B=∠CAB=40°,
∵∠EDB=∠B,
∴∠DEB=100°,BE=DE,
∴∠AED=80°,
∵AD平分∠BAC,
∴∠DAE=20°,
∴∠ADE=180°-80°-20°=80°,
∴AD=AE,
过点D作DF⊥AC于点F,作DH⊥AB于点H,
∴DF=DH,
易得△CDF≌△EDH,
∴CD=DE,
∴CD=BE,
∴AB=AE+BE=AD+CD,所以①正确.
故答案为②;①.
点评:本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”、“HL”;全等三角形的对应边相等.也考查了等腰三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、已知△ABC中,AC=BC,∠C=Rt∠.如图,将△ABC进行折叠,使点A落在线段BC上(包括点B和点C),设点A的落点为D,折痕为EF,当△DEF是等腰三角形时,点D可能的位置共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的顶点F是AB中点,两边FD、FE分别交AC,BC于点D,E两点,给出以下个结论:
①CD=BE  
②四边形CDFE不可能是正方形  
③△DEF是等腰直角三角形
S四边形CDFE=
12
S△ABC
.当∠DFE在△ABC内绕顶点F旋转时(点D不与A,C重合),
上述结论中始终正确的有
①③④
①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AC=BC,∠ACB=90°,BD平分∠ABC,求证:AB=BC+CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AC=BC,∠ACB=90゜,点P在射线AC上,连接PB,将线段PB绕点B逆时针旋转90゜得线段BN,AN交直线BC于M.
(1)如图1.若点P与点C重合,则
AM
MN
=
1
1
MC
AP
=
1
2
1
2
(直接写出结果):
(2)如图2,若点P在线段AC上,求证:AP=2MC;
(3)如图3,若点P在线段AC的延长线上,完成图形,并直接写出
MC
AP
=
1
2
1
2

查看答案和解析>>

同步练习册答案