精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,△ABC是⊙O的内接三角形,AB=AC,点P是的中点,连接PA,PB,PC.
(1)如图①,若∠BPC=60°,求证:

(2)如图②,若,求的值.
(1)先根据圆周角定理可得∠BAC=∠BPC=60°,即可证得△ABC为等边三角形,则可得∠ACB=60°,由点P是弧AB的中点,可得∠ACP=30°,再结合∠APC=∠ABC=60°即可求得结果;(2)

试题分析:(1)先根据圆周角定理可得∠BAC=∠BPC=60°,即可证得△ABC为等边三角形,则可得∠ACB=60°,由点P是弧AB的中点,可得∠ACP=30°,再结合∠APC=∠ABC=60°即可求得结果;
(2)连接AO并延长交PC于F,过点E作EG⊥AC于G,连接OC.由AB=AC可得AF⊥BC,BF=CF.由点P是弧AB中点可得∠ACP=∠PCB,即可得到EG=EF.由∠BPC=∠FOC可得sin∠FOC=sin∠BPC=.设FC=24a,根据勾股定理可得OC=OA=25a,则OF=7a,AF=32a.在Rt△AFC中,根据勾股定理可表示出AC的长,在Rt△AGE和Rt△AFC中,根据三角函数的定义求解即可.
(1)∵弧BC=弧BC
∴∠BAC=∠BPC=60°.
又∵AB=AC,
∴△ABC为等边三角形
∴∠ACB=60°,
∵点P是弧AB的中点,
∴∠ACP=30°,
又∠APC=∠ABC=60°,
∴AC=AP;
(2)连接AO并延长交PC于F,过点E作EG⊥AC于G,连接OC.

∵AB=AC,
∴AF⊥BC,BF=CF.
∵点P是弧AB中点,
∴∠ACP=∠PCB,
∴EG=EF.
∵∠BPC=∠FOC,
∴sin∠FOC=sin∠BPC=
设FC=24a,则OC=OA=25a,
∴OF=7a,AF=32a.
在Rt△AFC中,AC2=AF2+FC2
∴AC=40a.
在Rt△AGE和Rt△AFC中,sin∠FAC=

∴EG=12a.
∴tan∠PAB=tan∠PCB=
点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,AB=4,AC=6,∠BAC=60º,∠BAC的角平分线交△ABC的外接圆⊙O于点E,则AE的长为       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.

(1)AC与CD相等吗?为什么?
(2)若AC=2,AO=,求OD的长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,A、D、B、C是⊙O上的四点,∠ADC=∠CDB=60°,判断△ABC的形状并证明你的结论。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知△ABC为等腰直角三角形,D为斜边BC的中点,经过点A、D的⊙O与△ABC三边分别交于点E、F、M.对于如下四个结论:①∠EMB=∠FMC;②AE+AF=AC;③△DEF∽△ABC;④四边形AEMF是矩形.其中正确结论的个数是

A.4        B.3             C.2              D.1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切于点D.

(1)求证:AD平分∠BAC;
(2)若BE=2,BD=4,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是   (  )  
A.点PB.点QC.点R D.点M

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某校初一新生来自甲、乙、丙三所不同小学,其人数比为2:3:5,如图所示的扇形图表示上述分布情况.已知来自甲小学的为180人,则下列说法不正确的是(   )
A.扇形甲的圆心角是72°B.学生的总人数是900人
C.丙校的人数比乙校的人数多180人D.甲校的人数比丙校的人数少180人

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O的半径为4,点A、B、C在⊙O上,且∠ACB=45°,则弦AB的长是( )

A.            B.4              C.           D.3

查看答案和解析>>

同步练习册答案