精英家教网 > 初中数学 > 题目详情
(本题6分)如图,四边形是正方形,点上,,垂足为,请你在上确定一点,使,请你写出两种确定点G的方案,并写出其中一种方案的具体作法和证明

方案

 

 
一:                                             

方案

 

 
二:(1)作法:

(2) 证明:
解:方案

 

 
:(一)过点B作BG⊥AE,垂足为G;

(二)在AE上截取AG=DF;
(三)作交AE于点G;…………………………2分
(注:其中任意一个均可作为方案一,另外再选择一个作为方案二)
(作法正确)……………………………………………………………………………3分
(2)①如果是过点B作BG⊥AE,垂足为G,证明如下:
,BG⊥AE,
.……………………………………………………………4分
由题意知,
.……………………………………………………………………5分
∵四边形是正方形,∴AD=AB, 
中,,AD=AB,
(AAS). ………………………………………………………6分
②如果是在AE上截取AG=DF,证明如下:
,AD⊥AE,

.……………………………………………………………………4分
∵四边形是正方形,∴AD=AB, ……………………………………………5分
中,AG=DF,,AD=AB,
(SAS). ………………………………………………………6分
③如果作交AE于点G,证明如下:
,AD⊥AE,

.……………………………………………………………………4分
∵四边形是正方形,∴AD=AB, ……………………………………………5分
中,, AD=AB,
(ASA). ………………………………………………………6分
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(本题8分)如图,△ABC中,已知BE⊥AD,CF⊥AD,且BE=CF.
(1)请你判断AD是△ABC的中线还是角平分线?请证明你的结论.
(2)连接BF、CE,若四边形BFCE是菱形,则△ABC中应添加一个条件             
(填上你认为正确的一个条件即可)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知矩形ABCD中,ABEF是正方形,且矩形CDFE与矩形ABCD相似,求矩形ABCD的宽与长的比。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分6分)如图, F、C是线段AD上的两点,AB∥DE,BC∥EF,AF=DC,
连结AE、BD,求证:四边形ABDE是平行四边形。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(7分)如图,在梯形ABCD中,AD∥BC,AC、BD是对角线.过点D作DE
∥AC,交BC的延长线于点E.
(1)判断四边形ACED的形状并证明;
(2)若AC=DB,求证:梯形ABCD是等腰梯形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分4分)
(1)如图①两个正方形的边长均为3,求三角形DBF的面积.
(2)如图②,正方形ABCD的边长为3,正方形CEFG的边长为1, 求三角形DBF的面积.
(3)如图③,正方形ABCD的边长为a,正方形CEFG的边长为,求三角形DBF的面积.

从上面计算中你能得到什么结论.
结论是:
(没写结论也不扣分)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图7,等腰三角形ABC中,AB=AC,AH垂直BC,点E是AH上一点,延长AH至点F,使FH=EH,
(1)求证:四边形EBFC是菱形;
(2)如果=,求证:

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD中,点E在边AB上,点G在边AD上,且∠ECG
=45°,点F在边AD的延长线上,且DF= BE.则下列结论:①∠ECB是锐角,;
②AE<AG;③△CGE≌△CGF;④EG= BE+GD中一定成立的结论有    ▲    
(写出全部正确结论).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:平行四边形ABCD中,过对角线AC中点O的直线EF交AD于F,BC于E。
求证:BE=DF

查看答案和解析>>

同步练习册答案