分析 (1)由SAS证明△ABD≌△ACE,得出对应边相等即可
(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS证明△ACM≌△ABN,得出对应角相等即可.
解答 (1)证明:在△ABD和△ACE中,$\left\{\begin{array}{l}{AB=AC}&{\;}\\{∠1=∠2}&{\;}\\{AD=AE}&{\;}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴BD=CE;
(2)证明:∵∠1=∠2,
∴∠1+∠DAE=∠2+∠DAE,
即∠BAN=∠CAM,
由(1)得:△ABD≌△ACE,
∴∠B=∠C,
在△ACM和△ABN中,$\left\{\begin{array}{l}{∠C=∠B}&{\;}\\{AC=AB}&{\;}\\{∠CAM=∠BAN}&{\;}\end{array}\right.$,
∴△ACM≌△ABN(ASA),
∴∠M=∠N.
点评 本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:选择题
A. | 86° | B. | 76° | C. | 66° | D. | 52° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{10}$ | B. | 2$\sqrt{2}$ | C. | 3 | D. | 2$\sqrt{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{π}{6}$ | C. | $\frac{\sqrt{3}}{2}$-$\frac{π}{6}$ | D. | $\frac{\sqrt{3}}{3}$-$\frac{π}{6}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{9}{5}$ | B. | $\frac{12}{5}$ | C. | $\frac{16}{5}$ | D. | $\frac{18}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com