精英家教网 > 初中数学 > 题目详情

【题目】如图①,平面内的两条直线在直线上,点在直线上,过两点分别作的垂线,垂足分别为,我们把线段叫做线段在直线上的正投影,其长度可记为特别地,线段在直线上的正投影就是线段.请依据上述定义解决如下问题:

1)如图①,若,则   

2)如图②,在矩形中,,则   

3)如图③,在矩形中,点边上(),连接

①若,求矩形的面积.

②如图④,点延长线上,连按,若,求

【答案】(1)5(2) (3) ;②.

【解析】

1)由题意即可得出结果;

2)过点,则,由四边形是矩形, ,得出,由勾股定理得出,证明,得出,求出,即可得出结果;

3)①过点,由,求出,证明,求出,则

②过点,过点,由,得出,由,求出,再由勾股定理得出,证明,求出,再由勾股定理得出,即可得出结果.

解:(1)∵

故答案为:5

2 过点,则,如图②所示:

∵四边形是矩形,

即:

故答案为:

3)①过点,如图③所示:

则四边形是矩形、四边形是矩形,

即:

②过点,过点,如图④所示:

则四边形是矩形、四边形是矩形,

1得:

即:

解得:

,不合题意舍去,

即:

解得:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某超市准备进一批每个进价为40元的小家电,经市场调查预测,售价定为50元时可售出400个;定价每增加1元,销售量将减少10.

1)设每个定价增加x元,此时的销售量是多少?(用含x的代数式表示)

2)超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少元?

3)超市若要获得最大利润,则每个应定价多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校科技小组进行野外考察,途中遇到一片的烂泥湿地,为了人员和设备安全迅速地通过这片湿地,他们沿着前进路线铺了若干块大小不同的木板,构筑成一条临时通道,已知当压力不变时,木板对地面的压强p(Pa)是木板面积S(m2)的反比例函数,其图象如图所示.

1)请直接写出pS 之间的关系式和自变量S 的取值范围;

2)当木板面积为0.2 m2时,压强是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.

(1)写出按上述规定得到所有可能的两位数;

(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直立在点处的标杆,站立在点处的观察者从点处看到标杆顶、旗杆顶在一条直线上.已知,求旗杆高

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC内接于⊙O,且ABAC,点D在⊙O上,ADAB于点AADBC交于点EFDA的延长线上,且AFAE.

(1)求证:BF与⊙O相切.

(2)BF5cosC,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,直角三角形AOB中,∠AOB=90°AB平行于x轴,OA=2OBAB=5,反比例函数的图象经过点A

1)直接写出反比例函数的解析式;

2)如图②,Pxy)在(1)中的反比例函数图象上,其中1x8,连接OP,过O OQOP,且OP=2OQ,连接PQ.设Q坐标为(mn),其中m0n0,求nm的函数解析式,并直接写出自变量m的取值范围;

3)在(2)的条件下,若Q坐标为(m1),求POQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九年级孟老师数学小组经过市场调查,得到某种运动服的月销量y(件)是售价x(元/件)的一次函数,其售价、月销售量、月销售利润w(元)的三组对应值如下表:

售价x(元/件)

130

150

180

月销售量y(件)

210

150

60

月销售利润w(元)

10500

10500

6000

注:月销售利润=月销售量×(售价﹣进价)

1)①求y关于x的函数解析式(不要求写出自变量的取值范围);

②运动服的进价是  /件;当售价是  /件时,月销利润最大,最大利润是  元.

2)由于某种原因,该商品进价降低了m/件(m0),商家规定该运动服售价不得低于150/件,该商店在今后的售价中,月销售量与售价仍满足(1)中的函数关系式,若月销售量最大利润是12000元,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC是等边三角形,点DAC边上一点,连接BD,以BD为边在AB的左侧作等边△DEB,连接AE,求证:AB平分∠EAC

查看答案和解析>>

同步练习册答案