精英家教网 > 初中数学 > 题目详情
精英家教网如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度???为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形;
(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;
(4)探究:t为何值时,△PMC为等腰三角形.
分析:(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,CB、CN已知,根据勾股定理可求CA=5,即可表示CM;
(2)四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解;
(3)可先根据QN平分△ABC的周长,得出MC+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC面积的一半,由此可得出是否存在符合条件的t值.
(4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论:
①当MP=MC时,那么PC=2NC,据此可求出t的值.
②当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值.
③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值.
综上所述可得出符合条件的t的值.
解答:解:(1)∵AQ=3-t,
∴CN=4-(3-t)=1+t.
在Rt△ABC中,AC2=AB2+BC2=32+42
∴AC=5.
在Rt△MNC中,cos∠NCM=
NC
MC
=
4
5
,CM=
5+5t
4


(2)由于四边形PCDQ构成平行四边形,
∴PC=QD,即4-t=t,
解得t=2.

(3)如果射线QN将△ABC的周长平分,则有:
MC+NC=AM+BN+AB,
即:
5
4
(1+t)+1+t=
1
2
(3+4+5),
解得:t=
5
3
.(5分)
而MN=
3
4
NC=
3
4
(1+t),
∴S△MNC=
1
2
×
3
4
(1+t)2=
3
8
(1+t)2
当t=
5
3
时,S△MNC=
3
8
(1+t)2=
8
3
1
2
×
1
2
×4×3.
∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分;

(4)①当MP=MC时;则有:NP=NC,
即PC=2NC∴4-t=2(1+t),
解得:t=
2
3

②当CM=CP时;则有:
5
4
(1+t)=4-t,
解得:t=
11
9

精英家教网③当PM=PC时;则有:在Rt△MNP中,PM2=MN2+PN2
而MN=
3
4
NC=
3
4
(1+t),
PN=|PC-NC|=|(4-t)-(1+t)|=|3-2t|,
∴[
3
4
(1+t)]2+(3-2t)2=(4-t)2
解得:t1=
103
57
,t2=-1(舍去)
∴当t=
2
3
,t=
11
9
,t=
103
57
时,△PMC为等腰三角形.
点评:此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质.考查学生分类讨论和数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是AB边上一点,AE=BC,DE⊥EC,取DC的中点F,连接AF、BF.
(1)求证:AD=BE;
(2)试判断△ABF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD为边在直角梯形精英家教网ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.
(1)求证:EB=EF;
(2)延长FE交BC于点G,点G恰好是BC的中点,若AB=6,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
(1)求证:BC=CD;
(2)在边AB上找点E,连接CE,将△BCE绕点C顺时针方向旋转90°得到△DCF.连接EF,如果EF∥BC,试画出符合条件的大致图形,并求出AE:EB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•深圳二模)如图,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD为边在直角梯形ABCD外作等边三角形ADF,点E是直角梯形ABCD内一点,且∠EAD=∠EDA=15°,连接EB、EF.
(1)求证:EB=EF;
(2)若EF=6,求梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB为直径的⊙O切DC边于E点,AD=3cm,BC=5cm.求⊙O的面积.

查看答案和解析>>

同步练习册答案