精英家教网 > 初中数学 > 题目详情

【题目】点(2,﹣4)在反比例函数y= 的图象上,则下列各点在此函数图象上的是(  )
A.(2,4)
B.(﹣1,﹣8)
C.(﹣2,﹣4)
D.(4,﹣2)

【答案】D
【解析】解:∵点(2,﹣4)在反比例函数y= 的图象上,
∴k=2×(﹣4)=﹣8.
∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,
∴点(4,﹣2)在反比例函数y= 的图象上.
故选D.
由点(2,﹣4)在反比例函数图象上结合反比例函数图象上点的坐标特征,即可求出k值,再去验证四个选项中横纵坐标之积是否为k值,由此即可得出结论.本题考查了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出k值是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

AB在数轴上分别表示两个数abAB两点间的距离记为|AB|,O表示原点.当AB两点中有一点在原点时,不妨设点A为原点,如图1,则|AB|=|OB|=|b|=|a-b|;当AB两点都不在原点时,

①如图2,若点AB都在原点的右边时,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;

②如图3,若点AB都在原点的左边时,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;

③如图4,若点AB在原点的两边时,|AB|=|OB|+|OA|=|b|+|a|=-b+a=|a-b|.

回答下列问题:

(1)综上所述,数轴上AB两点间的距离为|AB|=______.

(2)若数轴上的点A表示的数为3,点B表示的数为-4,则AB两点间的距离为______;

(3)若数轴上的点A表示的数为x,点B表示的数为-2,则|AB|=______,若|AB|=3,则x的值为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A12),解答以下问题:

1)请在图中建立适当的直角坐标系,并写出图书馆B位置的坐标;

2)若体育馆位置坐标为C(-33),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.

(1)求二次函数与一次函数的解析式;
(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级10个班师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少4个.

(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?

(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC和DEB中,已知AB=DE,还需添加两个条件才能使ABC≌△DEC,不能添加的一组条件是

A.BC=EC,B=E B.BC=EC,AC=DC

C.BC=DC,A=D D.B=E,A=D

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:

油电混动汽车

普通汽车

购买价格

17.48

15.98

每百公里燃油成本(元)

31

46

某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少为(  )

A. 5000 B. 10000 C. 15000 D. 20000

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC内接于⊙O,D是 上一点,OD⊥BC,垂足为H.

(1)如图1,当圆心O在AB边上时,求证:AC=2OH;
(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;
(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5 ,BN=3 ,tan∠ABC= ,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AD⊥BCCE⊥AB,垂足分别为DEADCE交于点H,请你添加一个适当的条件:_____________,使△AEH≌△CEB

查看答案和解析>>

同步练习册答案