精英家教网 > 初中数学 > 题目详情
如图,抛物线y=mx2+3mx-3(m>0)与y轴交于点C,与x轴交于A、B两精英家教网点,点A在点B的左侧,且tan∠OCB=
13

(1)求此抛物线的解析式;
(2)如果点D是线段AC下方抛物线上的动点,设D点的横坐标为x,△ACD的面积为S,求S与x的关系式,并求当S最大时点D的坐标;
(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点的平行四边形?若存在求点P坐标;若不存在,请说明理由.
分析:(1)由抛物线解析式可求C(0,-3),在Rt△BOC中,已知tan∠OCB=
1
3
,OC=3,可求OB,确定B点坐标,代入抛物线解析式求m即可;
(2)依题意可知,点D(x,
3
4
x2+
9
4
x-3
),连接OD,由S△ACD=S△AOD+S△DOC-S△AOC,求S的表达式,利用配方法求S的最大值及此时D点坐标;
(3)存在.分三种情况:①当以AC为边,CP也是平行四边形的边;②当以AC为对角线,CP为边;③当以AC为边,CP是平行四边形的对角线;结合图形的性质分别求解.
解答:精英家教网解:(1)由抛物线y=mx2+3mx-3,得C(0,-3),
tan∠OCB=
1
3
,∠COB=90°,
OB
OC
=
1
3
,∴B(1,0),
∵抛物线y=mx2+3mx-3(m>0)过点B,
∴m+3m-3=0,∴m=
3
4

∴抛物线的解析式为y=
3
4
x2+
9
4
x-3


(2)如图1,∵抛物线对称轴为x=-
3
2
,B(1,0),∴A(-4,0)连接OD,
∵点D在抛物线y=
3
4
x2+
9
4
x-3
上,精英家教网
∴设点D(x,
3
4
x2+
9
4
x-3
),
则S△ACD=S△AOD+S△DOC-S△AOC
=
1
2
×4(-
3
4
x2-
9
4
x+3)+
1
2
×3(-x)-
1
2
×4×3

=-
3
2
x2-6x

∴S=-
3
2
(x+2)2+6

∴当x=-2时,△ACD的面积S有最大值为6.
此时,点D的坐标为(-2,-
9
2
).

(3)①如图2,当以AC为边,CP也是平行四边形的边精英家教网时,CP∥AE,点P与点C关于抛物线的对称轴对称,此时P(-3,-3).
②如图3,当以AC为对角线,CP为边时,此时P点的坐标是(-3,-3).
③如图4、图5,当以AC为边,CP是平行四边形的对角线时,点P、C到x轴的距离相等,
3
4
x2+
9
4
x-3
=3,解得x=
-3±
41
2

此时P(
-3-
41
2
,3)(如图4),或(
-3+
41
2
,3)(如图5),


综上所述,存在三个点符合题意,分别是P1(-3,-3),P2
-3-
41
2
,3),P3
-3+
41
2
,3).精英家教网
点评:本题主要考查了二次函数解析式的确定、函数图象交点的求法等知识点.主要考查学生数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线y=-x2+mx过点A(4,0),O为坐标原点,Q是抛物线的顶点.
(1)求m的值;
(2)点P是x轴上方抛物线上的一个动点,过P作PH⊥x轴,H为垂足.有一个同学说:“在x轴上方抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点P运动至点Q时,折线P-H-O的长度最长”,请你用所学知识判断:这个同学的说法是否正确.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,抛物线y=-
3
3
x2+mx+
3
与x轴交于A、B两点,与y轴交于点C,A点坐标为(-1,0)
(1)求m的值和点B的坐标;
(2)过A、B、C的三点的⊙M交y轴于另一点D,设P为弧CBD上的动点P(P不与C、D重合),连接AP交y轴于点H,问是否存在一个常数k,始终满足AH•AP=k?如果存在,请求出常数k;如果不存在,请说明理由;
(3)连接DM并延长交BC于N,交⊙M于点E,过E点的⊙M的切线分别交x轴、y轴于点F、G,试探究BC与FG的位置关系,并求直线FG的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=
12
x2+mx+n交x轴于A、B两点,直线y=kx+b经过点A,与这条抛物线的对称轴交于点M(1,2),且点M与抛物线的顶点N关于x轴对称.
(1)求这条抛物线的函数关系式;
(2)根据图象,写出函数值y为负数时,自变量x的取值范围;
(3)设题中的抛物线与直线的另一交点为C,已知P(x,y)为直线AC上一点,过点P作PQ⊥x轴,交抛物线于点Q.当-1≤x≤1.5时,求线段PQ的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•海沧区质检)如图,抛物线y=x2+bx+c与x轴的右交点为A,顶点D在矩形OABC的边BC上,当y≤0时,x的取值范围是1≤x≤5.
(1)求b,c的值;
(2)直线y=mx+n经过抛物线的顶点D,该直线在矩形OABC内部分割出的三角形的面积记为S,求S与m的函数关系式,并写出自变量m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c经过点A(5,0)、B(6,-6)和原点O,过点B的直线y=mx+n与抛物线相交于点C(2,y).过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴,交直线DC于点E,交x轴于点F.
(1)求该抛物线的解析式;
(2)求△OBC的面积;
(3)是否存在这样的点P,使得以P、C、E为顶点的三角形与△OCD相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案