精英家教网 > 初中数学 > 题目详情
如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如:平行四边形的一条对线所在的直线就是平行四边形的一条面积等分线.
(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有___;
(2)如图1,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S梯形ABCD=S△ADE.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);
(3)如图,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.

(1)略
(2)略
(3)能
(1)中线所在的直线.
(2)法一:连接BE,∵AB∥CE,AB=CE,∴四边形ABEC为平行四边形.∴BE∥AC,
∴△ABC和△AEC的公共边AC上的高也相等,∴S△ABC=S△AEC .
∴S梯形ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED .
       
法二:设AE与BC相交于点F.∵AB∥CE,∴∠ABF=∠ECF,∠BAF=∠CEF.
又∵AB=CE,∴△ABF≌△ECF.∴S梯形ABCD=S四边形AFCD+S△ABF=S四边形AFCD+S△ECF=S△AED .
过点A的梯形ABCD的面积等分线的画法如图①所示.
(3)能.连接AC,过点B作BE∥AC交DC的延长线于点E,连接AE.
∵BE∥AC,∴△ABC和△AEC的公共边AC上的高也相等,∴S△ABC=S△AEC .
∴S梯形ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED .
∵S△ACD>S△ABC ,∴面积等分线必与CD相交,取DE中点F,则直线AF即为要求作的四边形ABCD的面积等分线.作图如图②所示.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

一块边长为a米的正方形广场,扩建后的正方形边长比原来长2米,则扩建后广场面积增大了
A.(4a+4)米2B.(a2+4)米2C.(2a+4)米2 D.4米2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形网格中 ,每小格正方形边长为1,则格点△ABC中,边长为无理数的边数有(   )
A.0条B.1条C.2条D.3条

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

估算面积是18平方米的正方形,它的边长是     米(误差小于0.1米)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC=.设直线AC与直线x=4交于点E.

(1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一定过点E;
(2)设(1)中的抛物线与x轴的另一个交点为N,M是该抛物线上位于C、N之间的一动点,求△CMN面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在等腰梯形ABCD中,。直角三角板含角的顶点E在边BC上移动,一直角边始终经过点A,斜边与CD交于点F,若是以AB为腰的等腰三角形,则CF的等于_____

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在等腰梯形ABCD中,AD∥BC,,若,则梯形ABCD的周长为_______

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分10分)
如图,四边形ABCD是长方形.

(1)作△ABC关于直线AC对称的图形;
(2)试判断(1)中所作的图形与△ACD重叠部分的三角形形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

某个长方体主视图是边长为1cm的正方形.沿这个正方形的对角线向垂直于正方形的方向将长方体切开,截面是一个正方形.那么这个长方体的俯视图是

查看答案和解析>>

同步练习册答案