精英家教网 > 初中数学 > 题目详情
20.四边形ABCD和CEFG都是正方形,且正方形ABCD的边长为a,正方形CEFG的边长为b,连接BD,BF和DF后得到三角形BDF,请用含字母a和b的代数式表示三角形BDF的面积可表示为(  )
A.abB.$\frac{1}{2}$abC.$\frac{1}{2}$b2D.$\frac{1}{2}$a2

分析 可利用S△BDF=S△BCD+S梯形EFDC-S△BFE,把a、b代入,化简即可求出△BDF的面积.

解答 解:如图,
如图,S△BFD=S△BCD+S梯形CEFD-S△BEF
=$\frac{1}{2}$a2+$\frac{1}{2}$(a+b)×b-$\frac{1}{2}$(a+b)b
=$\frac{1}{2}$a2
故选:D.

点评 本题主要考查了正方形的性质及列代数式的知识,关键是根据题意将所求图形的面积分割,从而利用面积和进行解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,直线y=4-x与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于点D.

(1)当点M在AB上运动时,则四边形OCMD的周长=8.
(2)当四边形OCMD为正方形时,将正方形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a≤4),在平移过程中,当平移距离a为多少时,正方形OCMD的面积被直线AB分成1:3两个部分?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.点P为正三角形ABC内一点,PA=a,PB=b,PC=c,试用a、b、c表示S△ABC

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,Rt△ABC中,∠BAC=90°,将△ABC绕点C逆时针旋转,旋转后的图形是△A′B′C,点A的对应点A′落在中线AD上,且点A′是△ABC的重心,A′B′与BC相交于点E,那么BE:CE=4:3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.小灰灰和灰太狼一起进行晨练,小灰灰从狼堡先跑8分钟后,灰太狼才从同一起点沿同一路线开始跑,它们的速度一直保持不变,经过2分钟后两人相遇,小灰灰跑过的路程s和所用的时间t之间的关系如图所示,根据图象回答下列问题:
(1)写出这个情景中的变量是时间t和路程S;
(2)小灰灰的速度是每分钟100米;
(3)在图中画出灰太狼跑过的路程s和小灰灰跑步所用的时间t的关系图象,并写出函数表达式.(不要求写出自变量t的取值范围)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A(-1,0)、B(3,0),与y轴负半轴交于点C.
(1)若△ABD为等腰直角三角形,求此时抛物线的解析式;
(2)a为何值时△ABC为等腰三角形?
(3)在(1)的条件下,抛物线与直线y=$\frac{5}{4}$x-4交于M、N两点(点M在点N的左侧),动点P从M点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点N,若使点P运动的总路径最短,求点P运动的总路径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.已知抛物线y=2x2+bx+c与直线y=-1只有一个公共点,且经过A(m-1,n)和B(m+3,n),过点A,B分别作x轴的垂线,垂足记为M,N,则四边形AMNB的周长为22.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知,AB是⊙O的直径,AB=8,点C在⊙O的半径OA上运动,PC⊥AB,垂足为C,PC=5,PT为⊙O的切线,切点为T.

(1)如图1,当C点运动到O点时,求PT的长;
(2)如图2,当C点运动到A点时,连接PO、BT,求证:PO∥BT;
(3)如图3,设PT=y,AC=x,求y与x的解析式并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在△ABC中,∠ACB=90°,以BC为直径作圆O,交斜边AB于E,D是AC的中点,连接DE.
(1)求证:DE是圆O的切线;
(2)DE=2,AE=$\frac{16}{5}$.求圆O的半径.

查看答案和解析>>

同步练习册答案