【题目】如图,△ABC中,AC=BC,AB=4,∠ACB=90°,以AB的中点D为圆心DC长为半径作圆DEF,设∠BDF=α(0°<α<90°),当α变化时图中阴影部分的面积为 (圆:∠EDF=90°,圆的面积=)
【答案】π﹣2
【解析】解:作DM⊥AC于M,DN⊥BC于N,连接DC,如图所示:
∵CA=CB,∠ACB=90°,
∴∠A=∠B=45°,
DM=AD=AB,DN=BD=AB,
∴DM=DN,
∴四边形DMCN是正方形,
∴∠MDN=90°,
∴∠MDG=90°﹣∠GDN,
∵∠EDF=90°,
∴∠NDH=90°﹣∠GDN,
∴∠MDG=∠NDH,
在△DMG和△DNH中,,
∴△DMG≌△DNH(AAS),
∴四边形DGCH的面积=正方形DMCN的面积,
∵正方形DMCN的面积=DM2=AB2 , =×42=2,
∴四边形DGCH的面积=AB2 ,
∵扇形FDE的面积=
∴阴影部分的面积=扇形面积﹣四边形DGCH的面积=π﹣2,
所以答案是:π﹣2.
【考点精析】解答此题的关键在于理解扇形面积计算公式的相关知识,掌握在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).
科目:初中数学 来源: 题型:
【题目】如图:已知抛物线与轴交于A、B两点(点A在点B左侧),与交于点C,抛物线对称轴与轴交于点D, 为轴上一点。
(1)写出点A、B、C的坐标(用表示);
(2)若以DE为直径的圆经过点C且与抛物线交于另一点F,
①求抛物线解析式;
②P为线段DE上一动(不与D、E重合),过P作作,判断是否为定值,若是,请求出定值,若不是,请说明理由;
(3)如图②,将线段绕点顺时针旋转30°,与相交于点,连接.点是线段的中点,连接.若点是线段上一个动点,连接,将△绕点逆时针旋转得到△,延长交于点。若△的面积等于△的面积的,求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算
(1)(+3.5)﹣1.4﹣(2.5)+(﹣4.6)
(2)[2﹣5×(﹣ ) 2]÷(﹣ )
(3)[2 ﹣( + ﹣ )×24]÷5×(﹣1)2009
(4)﹣22+|5﹣8|+24÷(﹣3)×
(5)(xy2﹣x2y)﹣2( xy+xy2)+3x2y
(6)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)].
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=AC,∠A=20°,AB上一点D使AD=BC,过点D作DE∥BC且DE=AB,连接EC,则∠DCE的度数为( )
A.80°
B.70°
C.60°
D.45°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有下列几种说法:
①两条直线相交所成的四个角中有一个是直角;
②两条直线相交所成的四个角相等;
③两条直线相交所成的四个角中有一组相邻补角相等;
④两条直线相交对顶角互补.
其中,能两条直线互相垂直的是( )
A. ①③ B. ①②③ C. ②③④ D. ①②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com