精英家教网 > 初中数学 > 题目详情

已知正比例函数y=ax与反比例函数的图象有一个公共点A(1,2).

(1)求这两个函数的表达式;
(2)画出草图,根据图象写出正比例函数值大于反比例函数值时x的取值范围.

解:(1)把A(1,2)代入y=ax得a=2,
∴正比例函数解析式为y=2x。
把A(1,2)代入得b=1×2=2,
∴反比例函数解析式为
(2)如图,当﹣1<x<0或x>1时,正比例函数值大于反比例函数值。

解析试题分析:(1)分别把A点坐标代入正比例函数解析式和反比例函数解析式,求出a与b的值,从而确定两函数解析式。
(2)先画出y=2x和的图象,根据对称性得到两函数的另一个交点B与点A关于原点对称,则B点坐标为(﹣1,﹣2),然后观察图象得到当﹣1<x<0或x>2时,正比例函数图象都在反比例函数图象上方,即正比例函数值大于反比例函数值。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

我们规定:形如 的函数叫做“奇特函数”.当时,“奇特函数”就是反比例函数.
(1) 若矩形的两边长分别是2和3,当这两边长分别增加x和y后,得到的新矩形的面积为8 ,求y与x之间的函数关系式,并判断这个函数是否为“奇特函数”;
(2) 如图,在平面直角坐标系中,点O为原点,矩形OABC的顶点A,C的坐标分别为(9,0)、(0,3).点D是OA的中点,连结OB,CD交于点E,“奇特函数”的图象经过B,E两点.
① 求这个“奇特函数”的解析式;
② 把反比例函数的图象向右平移6个单位,再向上平移    个单位就可得到①中所得“奇特函数”的图象.过线段BE中点M的一条直线l与这个“奇特函数”的图象交于P,Q两点,若以B、E、P、Q为顶点组成的四边形面积为,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知一次函数(m为常数)的图象与反比例函数(k为常数,)的图象相交于点 A(1,3).

(1)求这两个函数的解析式及其图象的另一交点的坐标;
(2)观察图象,写出使函数值的自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知,一次函数的图象与反比例函数的图象都经过点
(1)求的值及反比例函数的表达式;
(2)判断点是否在该反比例函数的图象上,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,-3),反比例函数的图象经过点C,一次函数的图象经过点C,一次函数的图象经过点A,

(1)求反比例函数与一次函数的解析式;
(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中直线y=x﹣2与y轴相交于点A,与反比例函数在第一象限内的图象相交于点B(m,2).

(1)求反比例函数的关系式;
(2)将直线y=x﹣2向上平移后与反比例函数图象在第一象限内交于点C,且△ABC的面积为18,求平移后的直线的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,点A(1,a)在反比例函数(x>0)的图象上,AB垂直于x轴,垂足为点B,将△ABO沿x轴向右平移2个单位长度,得到Rt△DEF,点D落在反比例函数(x>0)的图象上.

(1)求点A的坐标;
(2)求k值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(2013年广东梅州8分)已知,一次函数y=x+1的图象与反比例函数的图象都经过点A(a,2).
(1)求a的值及反比例函数的表达式;
(2)判断点B是否在该反比例函数的图象上,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是   

查看答案和解析>>

同步练习册答案