分析 (1)把点A原点的坐标代入函数解析式,利用待定系数法求二次函数解析式解答;
(2)直接利用函数图象得出不等式ax2-4x+c>0的解集;
(3)根据三角形的面积公式求出点P到AO的距离,然后分点P在x轴的上方与下方两种情况解答即可.
解答 解:(1)由已知条件得:
$\left\{\begin{array}{l}{c=0}\\{a×{(-4)}^{2}-4×(-4)+c=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=-1}\\{c=0}\end{array}\right.$,
所以,此二次函数的解析式为:y=-x2-4x;
(2)如图所示:不等式ax2-4x+c>0的解集为:-4<x<0;
(3)∵点A的坐标为(-4,0),
∴AO=4,
设点P到x轴的距离为h,
则S△AOP=$\frac{1}{2}$×4h=8,
解得h=4,
①当点P在x轴上方时,-x2-4x=4,
解得:x=-2,
所以,点P的坐标为(-2,4),
②当点P在x轴下方时,-x2-4x=-4,
解得x1=-2+2$\sqrt{2}$,x2=-2-2$\sqrt{2}$,
所以,点P的坐标为(-2+2$\sqrt{2}$,-4)或(-2-2$\sqrt{2}$,-4),
综上所述,点P的坐标是:(-2,4)、(-2+2$\sqrt{2}$,-4)、(-2-2$\sqrt{2}$,-4).
点评 本题考查了待定系数法求二次函数解析式,二次函数图象上的点的坐标特征,(3)要注意分点P在x轴的上方与下方两种情况讨论求解.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | 1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com