【题目】如图所示,CD为⊙O的直径,AD,AB,EC分别与⊙O相切于点D,E,C(AD<BC),连接DE并延长与与直线BC相交于点P,连接OB.
(1)求证:BC=BP;
(2)若DEOB=40,求ADBC的值;
(3)在(2)条件下,若S△ADE:S△PBE=16:25,求S△ADE和S△PBE.
【答案】(1)证明见解析;(2)20;(3).
【解析】
(1)连接EC,根据切线长定理可得BC=BE,再证得BE=BP,即可证得结论;(2)如图2中,连接OA、CE,EC交OB于K.先证明△OCK∽△OBC,可得OC2=OKOB=DEOB=20,再证明△ADO∽△OCB,可得ADBC=ODOC=OC=20;(3)由△ADE∽△BPE,可得,设DE=4k,PE=5k,由△CDE∽△PDC,可得CD2=DEDP,即80=36k2,推出k=,求出△PEC的面积即可解决问题.
(1)证明:如图1中,连接EC.
∵BC、BE是⊙O的切线,
∴BC=BE,
∴∠BCE=∠BEC,
∵CD是直径,
∴∠CED=∠CEB=90°,
∴∠ECB+∠P=90°,∠CEB+∠CEB+∠PEB=90°,
∴∠P=∠PEB,
∴BE=PB,
∴BC=BP.
(2)解:如图2中,连接OA、CE,EC交OB于K.
∵BC=BE,OC=OE,
∴OB垂直平分线段EC,
∴∠OKC=∠OCB=90°,CK=EK,
∵OC=OD,
∴OK=DE,
∵△OCK∽△OBC,
∴OC2=OKOB=DEOB=20,
∵AD、AE是切线,
∴AD=AE,∵OD=OE,OA=OA,
∴△AOD≌△AOE,
∴∠AOD=∠AOE,同法证明,∠BOE=∠BOC,
∴∠AOB=90°,
∵∠AOD+∠BOC=90°,∠BOC+∠CBO=90°,
∴∠AOD=∠CBO,
∵∠ADO=∠BCO=90°,
∴△ADO∽△OCB,
∴ADBC=ODOC=OC2=20.
(3)如图2中,∵S△ADE:S△PBE=16:25,AD∥PB,
∴△ADE∽△BPE,
∴=,设DE=4k,PE=5k,
∵△CDE∽△PDC,
∴CD2=DEDP,
∴80=36k2,
∴k=,
∴DE=,PE=,EC=,
∴S△ECP=ECPE=,∵BC=BP,
∴S△PEB=S△PEC=,
∴S△ADE=S△PEB=.
科目:初中数学 来源: 题型:
【题目】如图,在等腰ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O、点C沿EF折叠后与点O重合,则∠CEF的度数是( )
A. 60° B. 55° C. 50° D. 45°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为( )
A. 140° B. 100° C. 50° D. 40°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先填写表,通过观察后再回答问题:
a | … | 0.0001 | 0.01 | 1 | 100 | 10000 | … |
… | 0.01 | x | 1 | y | 100 | … |
(1)表格中x= ,y= ;
(2)从表格中探究a与数位的规律,并利用这个规律解决下面两个问题:
①已知≈3.16,则≈ ;
②已知=8.973,若=897.3,用含m的代数式表示b,则b= ;
(3)试比较与a的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购. 经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.
(1)求甲、乙两种型号设备的价格;
(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;
(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月.若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】许多代数恒等式可以借助图形的面积关系直观表达,如图①,根据图中面积关系可以得到:。
(1)如图②,根据图中面积关系,写出一个关于的等式 ;
(2)利用(1)中的等式求解:,则 ;
(3)小明用8个面积一样大的长方形(宽,长)拼图,拼出了如图甲、乙的两种图案;图案甲是一个大的正方形,中间阴影部分是边长为3的小正方形;图案乙是一个大的长方形,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和不完整的频数分布直方图,请根据图表信息回答下列问题:
初中毕业生视力抽样调查频数分布表
视力 | 频数(人) | 频率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)本次调查的样本容量为 ;
(2)在频数分布表中,a= ,b= ,并将频数分布直方图补充完整;
(3)若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.
(1)当∠BDA=115°时,∠EDC=______°,∠DEC=______°;点D从B向C运动时,∠BDA逐渐变______(填“大”或“小”);
(2)当DC等于多少时,△ABD≌△DCE,请说明理由;
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,平面直角坐标系中,抛物线y=ax2﹣4ax+c与直线y=kx+1(k≠0)交于y轴上一点A和第一象限内一点B,该抛物线顶点H的纵坐标为5.
(1)求抛物线的解析式;
(2)连接AH、BH,抛物线的对称轴与直线y=kx+1(k≠0)交于点K,若S△AHB=,求k的值;
(3)在(2)的条件下,点P是直线AB上方的抛物线上的一动点(如图2),连接PA.当∠PAB=45°时,
ⅰ)求点P的坐标;
ⅱ)已知点M在抛物线上,点N在x轴上,当四边形PBMN为平行四边形时,请求出点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com