精英家教网 > 初中数学 > 题目详情

如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且CD=24 m,OE⊥CD于点E.已测得sin∠DOE=

(1)求半径OD;

(2)根据需要,水面要以每小时0.5m的速度下降,则经过多长时间才能将水排干?

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=3,CD=5$\sqrt{2}$,点P在线段AB上.若△PCD是以点P为直角顶点的直角三角形,则AP=1或6.

查看答案和解析>>

科目:初中数学 来源:2016-2017学年江苏省七年级下学期第一次课堂调研数学试卷(解析版) 题型:解答题

如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯前的道路平行,求∠C的度数。

查看答案和解析>>

科目:初中数学 来源:2016-2017学年江苏省七年级下学期第一次课堂调研数学试卷(解析版) 题型:选择题

若M=(x﹣3)(x﹣5),N=(x﹣2)(x﹣6),则M与N的关系为( )

A.M=N

B.M>N

C.M<N

D.M与N的大小由x的取值而定

查看答案和解析>>

科目:初中数学 来源:2017届江西省九年级下学期第一次模拟考试数学试卷(解析版) 题型:解答题

如图①,C为线段BE上的一点,分别以BC和CE为边在BE的同侧作正方形ABCD和正方形CEFG,M、N分别是线段AF和GD的中点,连接MN

(1)线段MN和GD的数量关系是 ,位置关系是

(2)将图①中的正方形CEFG绕点C逆时针旋转90°,其他条件不变,如图②,(1)的结论是否成立?说明理由;

(3)已知BC=7,CE=3,将图①中的正方形CEFG绕点C旋转一周,其他条件不变,直接写出MN的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源:2017届江西省九年级下学期第一次模拟考试数学试卷(解析版) 题型:填空题

如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=________.

查看答案和解析>>

科目:初中数学 来源:2017届江西省九年级下学期第一次模拟考试数学试卷(解析版) 题型:单选题

如图,在?ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCF的面积比为(   )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.下列各式正确的是(  )
A.(a-b)2=-(b-a)2B.$\frac{1}{{x}^{3}}$=x-3C.$\frac{{a}^{2}+1}{a+1}$=a+1D.x6÷x2=x3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.
(1)设定价减少x元,预订量为y台,写出y与x的函数关系式;
(2)若每台手机的成本是1200元,求所获的利润w(元)与x(元)的函数关系式,并说明当定价为多少时所获利润最大;
(3)若手机加工成每天最多加工50000台,且每批手机会有5%的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?

查看答案和解析>>

同步练习册答案