精英家教网 > 初中数学 > 题目详情
19.计算:
(1)($\frac{1}{3}$)-1-(π-5)0+(-1)2017
(2)(27x3-15x2+3x)÷3x.

分析 (1)根据负整数指数幂以及零指数幂的意义即可求出答案
(2)根据整式的除法法则即可求出答案.

解答 解:(1)原式=3-1-1=1
(2)原式=9x2-5x+1

点评 本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,在△ABC中,∠C=90°,D为AB边上一点,以DB为直径的⊙O与AC相切于点E,与BC相交于点F,FN⊥BE交⊙O于点N.
(1)求证:BE平分∠ABC;
(2)若sinA=$\frac{2}{3}$,AB=30,求圆心O到EN的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.已知:线段AB,BC,∠ABC=90°.
求作:矩形ABCD.
以下是甲、乙两同学的作业:

老师说甲、乙同学的作图都正确.
则甲的作图依据是:两组对边分别相等的四边形是平行四边形;有一个角是直角的平行四边形是矩形;
乙的作图依据是:对角线互相平分的四边形是平行四边形;有一个角是直角的平行四边形是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算或化简求值
(1)(2017)0+(-1)2017-($\frac{1}{2}$)-2
(2)先化简,再求值:5x2y-[3xy2-(4xy2-7x2y)],其中x=3,y=-$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,方格中的△ABC的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形,请在方格上按下列要求画图.
(1)在图①中画出与△ABC关于x轴对称的轴对称△A′B′C′;
(2)在图②中分别画出与△ABC全等且有一个公共顶点的格点△A″B″C″;与△ABC全等且有一条公共边的格点△A″′B″′C″′.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.已知a+b=2,a-b=-3,则a2-b2的值为(  )
A.6B.-6C.-$\frac{3}{2}$D.-5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.阅读下面材料,并解答其后的问题:
定义:两组领边分别相等的四边形叫做筝形.
如图1,四边形ABCD中,若AD=AB,CD=CB,则四边形ABCD是筝形.
类比研究:
我们在学完平行四边形后,知道可以从对称性、边、角和对角线四个角度对平行四边形的性质进行研究,请根据示例图形,完成下表:
四边形示例图形对称性对角线
平行
四边形
两组对边分别平行,两组对边分别相等两组对边分别平行,两组对边分别相等.两组对角
分别相等.
对角线互相平分.
等腰
梯形
①轴对称图形两组邻边分别相等有一组对角相等②一条对角线垂直平分另一条对角线
(1)表格中①、②分别填写的内容是:
①轴对称图形;
②一条对角线垂直平分另一条对角线.
(2)演绎论证:证明筝形有关对角线的性质.
已知:在筝形ABCD中,AD=AB,BC=DC,AC、BD是对角线.
求证:AC垂直平分BD.
证明:
(3)运用:如图3,已知筝形ABCD中,AD=AB=4,CD=CB,∠A=90°,∠C=60°,求筝形ABCD的面积

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?($\sqrt{3}≈1.73$,结果精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.?ABCD的周长等于20,AB=6,则AD=4.

查看答案和解析>>

同步练习册答案