【题目】我市某商场有甲、乙两种商品,甲种每件进价15元,售价20元;乙种每件进价35元,售价45元.
(1)若商家同时购进甲、乙两种商品100件,设甲商品购进x件,售完此两种商品总利润为y 元.写出y与x的函数关系式.
(2)该商家计划最多投入3000元用于购进此两种商品共100件,则至少要购进多少件甲种商品?若售完这些商品,商家可获得的最大利润是多少元?
(3)“五一”期间,商家对甲、乙两种商品进行表中的优惠活动,小王到该商场一次性付款324元购买此类商品,商家可获得的最小利润和最大利润各是多少?
打折前一次性购物总金额 | 优惠措施 |
不超过400元 | 售价打九折 |
超过400元 | 售价打八折 |
【答案】
(1)解:设甲商品购进x件,则乙商品购进(100﹣x)件,由题意,得
y=(20﹣15)x+(45﹣35)(100﹣x)=﹣5x+1000,
故y与x之间的函数关系式为:y=﹣5x+1000;
(2)解:由题意,得15x+35(100﹣x)≤3000,
解之,得x≥25.
∵y=﹣5x+1000,k=﹣5<0,
∴y随x的增大而减小,
∴当x取最小值25时,y最大值,此时y=﹣5×25+1000=875(元),
∴至少要购进25件甲种商品;若售完这些商品,商家可获得的最大利润是875元;
(3)解:设小王到该商场购买甲种商品m件,购买乙种商品n件.
① 当打折前一次性购物总金额不超过400时,购物总金额为324÷0.9=360(元),
则20m+45n=360,m=18﹣ n>0,∴0<n<8.
n是4的倍数,有3种情况:
情况1:m=0,n=8,则利润是:324﹣8×35=44(元);
情况2:m=9,n=4,则利润是:324﹣(15×9+35×4)=49(元);
情况3:m=18,n=0,则利润是:324﹣15×18=54(元);
② 当打折前一次性购物总金额超过400时,购物总金额为324÷0.8=405(元),
③ 则20m+45n=405,m= >0,∴0<n<9.
m、n均是正整数,有3种情况:
情况1:m=9,n=5,则利润为:324﹣(9×15+5×35)=14(元);
情况2:m=18,n=1,则利润为:324﹣(18×15+1×35)=19(元).
综上所述,商家可获得的最小利润是14元,最大利润是54元.
【解析】(1)根据利润=甲种商品的利润+乙种商品的利润就可以得出结论;(2)根据“商家计划最多投入3000元用于购进此两种商品共100件”列出不等式,解不等式求出其解,再根据一次函数的性质,求出商家可获得的最大利润;(3)设小王到该商场购买甲种商品m件,购买乙种商品n件.分两种情况讨论:①打折前一次性购物总金额不超过400;②打折前一次性购物总金额超过400.
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,BE平分∠ABC交AC边于点E,
(1)如图1,过点E作DE∥BC交AB于点D,求证:△BDE为等腰三角形;
(2)如图2,延长BE到D,∠ADB =∠ABC, AF⊥BD于F,AD=2,BF=3,求DF的长
(3)如图3,若AB=AC,AF⊥BD,∠ACD=∠ABC,判断BF、CD、DF的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),已知四边形ABCD的四条边相等,四个内角都等于90°,点E是CD边上一点,F是BC边上一点,且∠EAF=45°.
(1)求证:BF+DE=EF;
(2)若AB=6,设BF=x,DE=y,求y关于x的函数解析式,并写出x的取值范围;
(3)过点A作AH⊥FE于点H,如图(2),当FH=2,EH=1时,求△AFE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明为班级联欢会设计了一个摸球游戏.游戏规则如下:在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.游戏者先从纸箱里随机摸出一个球,记录颜色后放回,将小球摇匀,再随机摸出一个球,若两次摸到的球颜色相同,则游戏者可获得一份纪念品.请你利用树状图或列表法求游戏者获得纪念品的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C为线段AE上一动点,(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交与点P,BE与CD交于点Q,连接PQ.
求证:(1)AD=BE
(2)△APC≌△BQC
(3)△PCQ是等边三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)我市开展了“寻找雷锋足迹”的活动,某中学为了了解七年级800名学生在“学雷锋活动月”中做好事的情况,随机调查了七年级50名学生在一个月内做好事的次数,并将所得数据绘制成统计图,请根据图中提供的信息解答下列问题: ①所调查的七年级50名学生在这个月内做好事次数的平均数是 , 众数是 , 极差是 :
②根据样本数据,估计该校七年级800名学生在“学雷锋活动月”中做好事不少于4次的人数.
【答案】解:①平均数;(2×5+3×6+4×13+5×16+6×10)÷50=4.4;
众数:5次;
极差:6﹣2=4;
②做好事不少于4次的人数:800× =624;
(1)甲口袋有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5,从这两个口袋中各随机地取出1个小球. ①用“树状图法”或“列表法”表示所有可能出现的结果;
②取出的两个小球上所写数字之和是偶数的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )
A. 13=3+10 B. 25=9+16 C. 36=15+21 D. 49=18+31
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com