A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | 3 |
分析 首先过点C作CE⊥BD于点E,由勾股定理可求得BC,CD,BD的长,然后由三线合一求得BE的长,再利用勾股定理求得CE的长,继而求得答案.
解答 解:过点C作CE⊥BD于点E,
根据题意得:BC=CD=$\sqrt{{2}^{2}+{1}^{2}}$=$\sqrt{5}$,BD=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,
∴BE=$\frac{1}{2}$BD=$\frac{\sqrt{2}}{2}$,
∴CE=$\sqrt{B{C}^{2}-B{E}^{2}}$=$\frac{3\sqrt{2}}{2}$,
∴tan∠DBC=$\frac{CE}{BE}$=3.
故选D.
点评 此题考查了菱形的性质、等腰三角形的性质、勾股定理以及三角函数的定义.注意准确作出辅助线是解此题的关键.
科目:初中数学 来源: 题型:选择题
A. | -20% | B. | 40% | C. | -220% | D. | 20% |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com