精英家教网 > 初中数学 > 题目详情
1.如图,在四边形ABCD中,E为AB边上一点,ED⊥AD于D,EC⊥CB于C,且∠AED=∠BEC,AB=2$\sqrt{13}$,AD=3,BD=$\sqrt{37}$,M、N分别为AE、BE的中点,连接DM、CN,则△DEM与△CEN的周长之和为2$\sqrt{13}$+6.

分析 根据三角形相似,从而得到∠A=∠ABC,进而补全等腰三角形,△DEM与△CEN的周长之和就可转化为AB+BH,而BH是△ADB的边AD上的高,只需利用勾股定理建立方程,求出DH,再求出BH,就可解决问题.

解答 解:延长AD、BC交于点F,作BH⊥AF,垂足为H,如图,
∵ED⊥AD,EC⊥CB,
∴∠ADE=∠BCE=90°,
又∵∠AED=∠BEC,
∴△ADE∽△BCE,
∴∠A=∠CBE,
∴FA=FB.
连接EF,∵S△ABF=S△AEF+S△BEF
即$\frac{1}{2}$AF•BH=$\frac{1}{2}$AF•DE+$\frac{1}{2}$BF•CE,
∴ED+EC=BH,
设DH=x,则AH=AD+DH=(3+x).
∵BH⊥AF,
∴∠BHA=90°.
∴BH2=BD2-DH2=AB2-AH2
∵AB=2$\sqrt{13}$,AD=3,BD=$\sqrt{37}$,
∴($\sqrt{37}$)2-x2=(2$\sqrt{13}$)2-(3+x)2
解得:x=1.
∴BH2=BD2-DH2=37-1=36,
∴BH=6,
∴ED+EC=BH=6,
∵∠ADE=∠BCE=90°,
且M、N分别为AE、BE的中点,
∴DM=AM=EM=$\frac{1}{2}$AE,CN=BN=EN=$\frac{1}{2}$BE.
∴△DEM与△CEN的周长之和
=DE+DM+EM+CN+EN+EC
=DE+AE+BE+EC=DE+AB+EC
=DE+EC+AB=2$\sqrt{13}$+6.
即△DEM与△CEN的周长之和为2$\sqrt{13}$+6.
故答案为:2$\sqrt{13}$+6.

点评 本题考查了相似三角形的性质与判定,三角形的面积的计算,平行线的性质与判定、直角三角形斜边上的中线等于斜边的一半、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.将正方形纸片ABCD按如图所示对折,使边AD与BC重合,折痕为EF,连接AE,将AE折叠到AB上,折痕为AH,则$\frac{BH}{BC}$的值是$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.设m、n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=5.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是(  )
A.75°B.60°C.45°D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在读书月活动中,某校号召全体师生积极捐书,为了解所捐书籍的种类,图书管理员对部分书籍进行了抽样调查,根据调查数据绘制了如下不完整的统计图表.请你根据统计图表所提供的信息回答下面问题:
某校师生捐书种类情况统计表
种类频数百分比
A.科普类12n
B.文学类1435%
C.艺术类m20%
D.其它类615%
(1)统计表中的m=8,n=30%;
(2)补全条形统计图;
(3)本次活动师生共捐书2000本,请估计有多少本科普类图书?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,以A为顶点的抛物线l2是由抛物线l1:y=x2沿x轴向右平移2个单位后得到的,两抛物线相交于点M,抛物线l2与y轴交于点D,以OD为边向右作正方形ODCB,P为抛物线l1上一点,其横坐标为m(0≤m≤2),且点P不与点M重合,过点P作PQ∥y轴,交抛物线l2于点Q,将PQ绕点P逆时针旋转90°,得到线段PE,连结EQ.
(1)求点M坐标.
(2)求△PEQ与正方形ODCB的重叠部分图形面积S与m之间的函数关系式.
(3)当点E落在抛物线l1或l2上时,求m的值.
(4)直接写出△PEQ的一边被抛物线l1或l2平分时m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO,在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降,如图所示,根据题中相关信息回答下列问题:
(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;
(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?
(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.为了预防流行性感冒,某学校对教室采用药熏消毒法进行消毒.已知药物燃烧时室内每立方米空气中的含药量y毫克)与时间x(分钟)成正比例;药物燃烧后,y与x成反比例(如图所示).请根据图中提供的信息,解答下列问题:
(1)药物燃烧后y与x的函数关系式为y=$\frac{48}{x}$;
(2)当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室;
(3)当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,已知点A、B、C、D、E、F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取得长度为$\sqrt{3}$的线段的概率为$\frac{2}{5}$.

查看答案和解析>>

同步练习册答案