精英家教网 > 初中数学 > 题目详情
3.如图,将一副三角板的直角顶点重合在一起,将三角板AOB绕点O的旋转过程中,下列结论成立的是(  )
A.∠AOD>∠BOCB.∠AOC≠∠BODC.∠AOD-∠BOC=45°D.∠AOD+∠BOC=180°

分析 依据旋转的性质可知∠AOB=∠COD=90°,然后依据图形间角的和差关系进行求解即可..

解答 解:∵∠AOB=∠COD=90°,
∴∠AOD=∠AOB+∠COD-∠BOC.
∴∠AOD+∠BOC=∠AOB+∠COD=90°+90°=180°.
故选:D.

点评 本题主要考查的是旋转的性质、角的运算,明确在旋转过程中∠AOB和∠COD的度数不变是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.下列实数中,属于无理数的是(  )
A.-$\frac{1}{3}$B.0.1C.$\sqrt{4}$D.$\root{3}{9}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知抛物线y=x2-(5+a)x+5a与x轴交于定点A和另一点C,
(1)求定点A的坐标;
(2)点B(1,2)是抛物线y=x2-(5+a)x+5a与以坐标原点为圆心的圆的一个交点,试判断直线AB与圆位置关系;
(3)在(2)中的抛物线上是否存在点P(P在点A的右上方),使△PAC、△PBC的面积相等?若存在,请求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.在矩形ABCD中,AB=$\sqrt{2}$,BC=2,以A为圆心,AD为半径画弧交线段BC于E,连接DE,则阴影部分的面积为(  )
A.$\frac{π}{2}$-$\sqrt{2}$B.$\frac{π}{2}$-$\frac{\sqrt{2}}{2}$C.π-$\sqrt{2}$D.π-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算:
(1)(3.14-π)0+(-$\frac{1}{2}$)-2-2×2-1
(2)(2a2+ab-2b2)(-$\frac{1}{2}$ab)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.下列命题:①两直线平行,同旁内角互补; ②三角形的外角和是180°; ③面积相等的三角形是全等三角形;④若n<1,则n2-1<0;其中,假命题的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如果点M在y轴的左侧,且在x轴的上侧,到两坐标轴的距离都是1,则点M的坐标为(  )
A.(-1,2)B.(-1,-1)C.(-1,1)D.(1,1)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.若不等式组$\left\{\begin{array}{l}2x-4≤0\\ 1+x>a\end{array}\right.$有解,则a的取值范围是(  )
A.a≤3B.a<3C.a<2D.a≤2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图1是美国第20届总统加菲尔德于1876年公开发表的勾股定理一个简明证法,聪明的思齐和他的社团小朋友们发现:两个直角三角形在发生变化过程中,只要满足一定的条件,就会有神奇的结果:
(1)问题:若把两个变换的三角形拼成如图2所示四边形ABCD,点P为AB上一点,且∠DPC=∠A=∠B=90°.
求证:AD•BC=AP•BP.
(2)探究:继续变换图形,如图3,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.
(3)应用:请利用(1)(2)获得的经验解决问题:如图4,在△ABD中,AB=12,AD=BD=10,点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,点C在边BD上,且满足∠DPC=∠A,问:经过几秒后CD长度等于D到AB的距离?

查看答案和解析>>

同步练习册答案