精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,⊙P与y轴相切于点C,与x轴相交于A,B两点,若点P的坐标为(5,3),点M是⊙P上的一动点,则△ABM面积的最大值为(  )
分析:首先过点P作PD⊥x轴于点D,连接PC,PA,易得PC=PA=5,PD=3,然后由垂径定理,即可求得AD的长,继而求得AB的长,继而求得答案.
解答:解:过点P作PD⊥x轴于点D,连接PC,PA,
∵点P的坐标为(5,3),
∵⊙P与y轴相切于点C,
∴PC=5,PD=3,
∴PA=PC=5,
在Rt△PAD中,AD=
PA2-PD2
=4,
∵PD⊥AB,
∴AB=2AD=8,
当点M(3,8)时,△ABM面积最大,最大值为:
1
2
AB•MD=
1
2
×8×8=32.
故选C.
点评:此题考查了切线的性质、垂径定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案