精英家教网 > 初中数学 > 题目详情
如图,在等腰△ABC中,AB=AC=5cm,BC=6cm,点P从点B开始沿BC边以每秒1cm的速度向点C运动,点Q从点C开始沿CA边以每秒2 cm的速度向点A运动,DE保持垂直平分PQ,且交PQ于点D,交BC于点E.点P,Q分别从B,C两点同时出发,当点Q精英家教网运动到点A时,点Q、p停止运动,设它们运动的时间为x cm.
(1)当x=
 
秒时,射线DE经过点C;
(2)当点Q运动时,设四边形ABPQ的面积为ycm2,求y与x的函数关系式(不用写出自变量取值范围);
(3)当点Q运动时,是否存在以P、Q、C为顶点的三角形与△PDE相似?若存在,求出x的值;若不存在,请说明理由.
分析:(1)由于DE垂直平分PQ,所以只要CP=CQ,根据等腰三角形的性质,DE又是顶角的平分线,所以列出方程,求出x=2.
(2)由于四边形AQPB的形状不规则,所以可以用△ABC的面积减去△PQC的面积,而△PQC的面积可以用x表达,则四边形AQPB的面积也可以用x表达出来.
(3)假设存在,根据已知条件,易证△PQC∽△AMC,所以
QC
MC
=
PC
AC
,所以
2x
3
=
6-x
5
,即x=
18
13
解答:精英家教网解:(1)x=2;
当DE经过点C时,∵DE⊥PQ,PD=QD,
∴PC=CQ,PC=6-x,CQ=2x,
即6-x=2x,得x=2,
∴当x=2时,当DE经过点C;

(2)分别过点Q、A作QN⊥BC,AM⊥BC垂足为M、N.
∵AB=AC=5cm,BC=6cm,
AM=
52-32
=4
(cm),
∵QN∥AM,
∴△QNC∽△AMC,
QN
AM
=
CQ
CA
,即
QN
4
=
2x
5

QN=
8
5
x

又PC=6-x,
∴S△PCQ=
1
2
PC•QN
=
1
2
(6-x)•
8
5
x

∴y=S△ABC-S△PCQ=
1
2
×6×4
-
1
2
(6-x)•
8
5
x

y=
4
5
x2-
24
5
x+12
精英家教网

(3)存在.
理由如下:
∵DE⊥PQ,
∴PQ⊥AC时△PQC∽△PDE
此时,△PQC∽△AMC
QC
MC
=
PC
AC
2x
3
=
6-x
5

x=
18
13
点评:本题需先证得三角形相似和待定系数法求二次函数解析式,再通过相似形的性质,解决问题,全面的考查了相似形的性质和判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在等腰△ABC中,AB=AC,BE⊥AC,垂足为E,则∠1与∠A的关系式为(  )
A、∠1=∠A
B、∠1=
1
2
∠A
C、∠1=2∠A
D、无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰△ABC中,AB=AC,AB的垂直平分线DE交AB于点D,交另一腰AC于点E,若∠EBC=15°,则∠A=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,在等腰△ABC中,AB=AC,∠ABC=α,在四边形BDEC中,DB=DE,∠BDE=2α,M为CE的中点,连接AM,DM.
(1)在图中画出△DEM关于点M成中心对称的图形;
(2)求证AM⊥DM;
(3)当α=
45°
,AM=DM.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丽水)如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是
50°
50°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰△ABC中,AB=AC=10cm,直线DE垂直平分AB,分别交AB、AC于D、E两点.若BC=8cm,则△BCE的周长是
18
18
cm.

查看答案和解析>>

同步练习册答案