精英家教网 > 初中数学 > 题目详情
已知:如图,在平面直角坐标系xOy中,AB∥x轴,点C是点B关于原点精英家教网O的对称点,连接AC交x轴于点D,点A的坐标为(0,-3),sinB=
35

(1)求B、C、D三点的坐标;
(2)求过A、B、C三点的抛物线的解析式;
(3)设点E(8,n)在(2)中的抛物线上,请你在x轴上求一点F,使得△DEF是以DE为底边的等腰三角形.
分析:(1)本题需先根据题意得出OA、OB、AB的长,先求出B的坐标,再根据对称求出C、D两点的坐标即可.
(2)本题需先设出抛物线的解析式y=ax2+bx-3,然后列出方程组求出a、b的值,即可得出所求抛物线的解析式.
(3)本题需先求出E点的坐标,再设F点的坐标为F(m,0),根据DF=EF列出方程,解出m的值,即可求出F点的坐标.
解答:精英家教网解:(1)∵点A的坐标为(0,-3),
∴OA=3.
∵AB∥x轴,
∴∠OAB=90°.
sinB=
OA
OB
=
3
5

∴OB=5.
∴AB=4.
∴B点坐标为:B(4,-3).
∵点C是点B关于原点O的对称点,
∴C点坐标为:C(-4,3),且OC=OB.
OD=
1
2
AB=2

∴D点坐标为:D(-2,0);

(2)设过A,B,C三点的抛物线的解析式为y=ax2+bx-3,
16a+4b-3=-3
16a-4b-3=3.

解得
a=
3
16
b=-
3
4
.

所求抛物线的解析式为y=
3
16
x2-
3
4
x-3


(3)当x=8时,y=
3
16
×64-
3
4
×8-3=3

∴E点坐标为:E(8,3).
设F点的坐标为F(m,0),
∴DF=m+2.
过点E作EH⊥x轴于H,
∴EF2=EH2+FH2=32+(8-m)2
∵DF=EF,
∴(m+2)2=32+(8-m)2
解得
69
20

F点的坐标为(
69
20
,0)
点评:本题主要考查了二次函数的综合应用,在解题时要结合图形列出方程,求出点的坐标是本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直y=
3
2
x+b
与双曲线y=
16
x
相交于第一象限内的点A,AB、AC分别垂直于x轴、y轴,垂足分别为B、C,已知四边形ABCD是正方形,求直线所对应的一次函数的解析式以及它与x轴的交点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶
8,9,10,11或12
8,9,10,11或12
个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图1,在平面直角坐标系内,直线l1:y=-x+4与坐标轴分别相交于点A、B,与直线l2y=
13
x
相交于点C.
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=1交直线l1于点E,交直线l2于点D,平行于y轴的直x=a交直线l1于点M,交直线l2于点N,若MN=2ED,求a的值;
(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP之间的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2012届重庆万州区岩口复兴学校九年级下第一次月考数学试卷(带解析) 题型:解答题

已知:直角梯形AOBC在平面直角坐标系中的位置如图,若AC∥OB,OC平分∠AOB,CB⊥x轴于B,点A坐标为(3 ,4). 点P从原点O开始以2个单位/秒速度沿x轴正向运动 ;同时,一条平行于x轴的直线从AC开始以1个单位/秒速度竖直向下运动 ,交OA于点D,交OC于点M,交BC于点E. 当点P到达点B时,直线也随即停止运动.

(1)求出点C的坐标;
(2)在这一运动过程中, 四边形OPEM是什么四边形?请说明理由。若
用y表示四边形OPEM的面积 ,直接写出y关于t的函数关系式及t的
范围;并求出当四边形OPEM的面积y的最大值?
(3)在整个运动过程中,是否存在某个t值,使⊿MPB为等腰三角形?
若有,请求出所有满足要求的t值.

查看答案和解析>>

科目:初中数学 来源:2013年浙江省湖州市中考数学模拟试卷(十一)(解析版) 题型:解答题

如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶______个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)

查看答案和解析>>

同步练习册答案