【题目】受寒潮影响,淘宝网上的电热取暖器销售火旺,某电商销售每台成本价分别为200元、170元的A、B两种型号的电热取暖器,下表是近两天的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一天 | 3台 | 5台 | 1800元 |
第二天 | 4台 | 10台 | 3100元 |
(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A,B两种型号的电热取暖器的销售单价;
(2)若电商准备用不多于5400元的金额再采购这两种型号的电热取暖器共30台,求A种型号的电热取暖器最多能采购多少台?
【答案】
(1)解:设A、B两种型号的电热取暖器的销售价分别为x、y元,
则: ,
解得: ,
答:A、B两种型号电热取暖器的销售介分别为250元和210元.
(2)解:设采购A种型号电热取暖器a台,则采购B种型号的电热取暖器(30﹣a)台,
则200a+170(30﹣a)≤5400,
解得:a≤10,
答:最多采购A种型号的电风扇10台.
【解析】(1)设A、B两种型号的电热取暖器的销售价分别为x、y元,根据3台A种型号和5台B种型号的电热取暖器收入1800元,4台A种型号和10台B种型号的电热取暖器收入3100元,列出方程组求解即可;(2)设采购A种型号电热取暖器a台,则采购B种型号的电热取暖器(30﹣a)台,根据金额不多于5400元,列出不等式求解即可.
科目:初中数学 来源: 题型:
【题目】甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.甲、乙两种商品原来的单价各是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】乘法公式的探究及应用:
数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为的正方形,B种纸片是边长为的正方形,C种纸片长为宽为的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形。
(1)请用两种不同的方法表示图2大正方形的面积:
方法1:_____________________;方法2:_____________________.
(2)观察图2,请你写出下列三个代数式:之间的等量关系;
(3)类似的,请你用图1中的三种纸片拼一个图形验证:
(4)根据(2)题中的等量关系,解决如下问题:
已知:求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆。由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人:他们经过培训后上岗,也能独立进行电动汽车的安装。生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车。
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘新工人若干名(新工人人数少于10人)和抽调的熟练工合作,刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD的一组对边AD、BC的延长线交于点E.
(1)如图1,若∠ABC=∠ADC=90°,求证:EDEA=ECEB;
(2)如图2,若∠ABC=120°,cos∠ADC= ,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;
(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC= ,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了丰富同学们的课余生活,某校决定在七年级学生中开展足球、篮球、乒乓球以及羽毛球四项课外体育活动,并要求每名学生必须且只能选择其中一项为了提前了解选择各种体育项目的学生人数,作为校学生会体育部部长的小强,随机抽取了部分七年级学生进行问卷调查,并绘制出了以下两幅不完整的统计图请根据统计图回答下列问题
参与问卷调查的学生有多少人?并补全条形统计图;
在扇形统计图中,选择乒乓球项目的扇形的圆心角是多少度?
若该校七年级总人数为1200人,请估计选择羽毛球项目的人数一共是多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB与y轴交于点A,与x轴交于点B,点A的纵坐标、点B的横坐标如图所示.
(1)求直线AB对应的函数表达式;
(2)点P在直线AB上,是否存在点P使得三角形AOP的面积为1,如果存在,求出所有满足条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B,C,D三点在同一直线上.
(1)求树DE的高度;
(2)求食堂MN的高度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com