精英家教网 > 初中数学 > 题目详情

计算的结果是-1的式子是(    )

A.B.C.D.

A

解析试题分析:根据绝对值的规律、有理数的混合运算法则依次分析各选项即可作出判断.
解:A、,本选项正确;
B、,C、,D、,故错误.
考点:有理数的混合运算
点评:计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪、皮尺、小镜子.
(1)小华利用测角仪和皮尺测量塔高.图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A,用测角仪测出看塔顶(M)的仰角α=35°,在A点和塔之间选择一点B,测出看塔顶(M)的仰角β=45°,然后用皮尺量出A、B两点的距离为18.6m,自身的高度为1.6m.请你利用上述数据帮助小华计算出塔的高度;(tan35°≈0.7,结果保留整数)
(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP的长为am(如图2),你能否利用这一数据设计一个测量方案如果能,请回答下列问题:
①在你设计的测量方案中,选用的测量工具是:
 

②要计算出塔的高,你还需要测量哪些数据
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

28、小明和小强平时是爱思考的学生,他们在学习《整式的运算》这一章时,发现有些整式乘法结果很有特点,例如:(x-1)(x2+x+1)=x3-1,(2a+b)(4a2-2ab+b2)=8a3+b3
小明说:“这些整式乘法左边都是一个二项式跟一个三项式相乘,右边是一个二项式”,
小强说:“是啊!而且右边都可以看成是某两项的立方的和(或差)”
小明说:“还有,我发现左边那个二项式和最后的结果有点像”
小强说:“对啊,我也发现左边那个三项式好像是个完全平方式,不对,又好像不是,中间不是两项积的2倍”
小明说:“二项式中间的符号、三项式中间项的符号和右边结果中间的符号也有点联系”

亲爱的同学们,你能参与到他们的讨论中并找到相应的规律吗?
(1)能否用字母表示你所发现的规律?
(2)你能利用上面的规律来计算(-x-2y)(x2-2xy+4y2)吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•益阳)已知:如图,抛物线y=a(x-1)2+c与x轴交于点A(1-
3
,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处.
(1)求原抛物线的解析式;
(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比
5
-1
2
(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:
5
≈2.236
6
≈2.449
,结果可保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宁化县质检)已知:如图,抛物线y=ax2+bx+c与x轴交于点A(1-
3
,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.
(1)求原抛物线的解析式;
(2)在原抛物线上,是否存在一点,与它关于原点对称的点也在该抛物线上?若存在,求满足条件的点的坐标;若不存在,说明理由.
(3)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比
5
-1
2
(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:
5
≈2.236
6
≈2.449
,结果精确到0.001)

查看答案和解析>>

科目:初中数学 来源:黄冈学霸 八年级数学 下 新课标版 题型:022

分式:①,②,③,计算的结果是整式的有________.(填序号)

查看答案和解析>>

同步练习册答案