分析 (1)设该超市购进甲商品x件,则购进乙商品(80-x)件,根据恰好用去1600元,求出x的值,即可得到结果;
(2)设该超市购进甲商品x件,乙商品(80-x)件,根据两种商品共80件的购进费用不超过1640元,且总利润(利润=售价-进价)不少于600元列出不等式组,求出不等式组的解集确定出x的值,即可设计相应的进货方案,并找出使该超市利润最大的方案.
解答 解:(1)设该超市购进甲商品x件,则购进乙商品(80-x)件,
根据题意得:10x+30(80-x)=1600,
解得:x=40,80-x=40,
答:购进甲、乙两种商品各40件;
(2)设该超市购进甲商品x件,乙商品(80-x)件,
由题意得:$\left\{\begin{array}{l}{10x+30(80-x)≤1640}\\{5x+10(80-x)≥600}\end{array}\right.$,
解得:38≤x≤40,
∵x为非负整数,
∴x=38,39,40,相应地y=42,41,40,
进而利润分别为5×38+10×42=190+420=610,5×39+10×41=195+410=605,5×40+10×40=200+400=600,
则该超市利润最大的方案是购进甲商品38件,乙商品42件.
共有三种方案
方案一:甲38件,乙42件
方案二:甲39件,乙41件
方案三:甲40件,乙40件.
方案一商店利润最大.
点评 此题考查了一元一次不等式组的应用,以及一元一次方程的应用,找出题中的等量关系及不等式关系是解本题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com