A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解答 解:①∵抛物线的开口向下,
∴a<0.
∵抛物线交y轴的正半轴,
∴c>0.
∵x=-$\frac{b}{2a}$=1,
∴a、b异号.
∴b>0.
∴abc<0故①正确.
②由抛物线的对称性可知当x=-1时,y<0,即a-b+c<0,故②正确;
③∵a<0,c>0,
∴3a-4c<0,故③正确.
由函数图象可知:如图,当-1<x<3时,y不只是大于0,④错误.
所以正确的说法有①②③三个,
故选C.
点评 本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握.熟练掌握二次函数的性质是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 5,12,13 | B. | 1,2,$\sqrt{5}$ | C. | 6,8,12 | D. | 3a,4a,5a(a>0) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com