精英家教网 > 初中数学 > 题目详情
(2012•北海)因式分解:-m2+n2=
(n+m)(n-m)
(n+m)(n-m)
分析:直接利用平方差公式分解因式即可.
解答:解:-m2+n2
=n2-m2
=(n+m)(n-m).
故答案为:(n+m)(n-m).
点评:本题考查了利用平方差公式分解因式,熟记平方差公式的结构,两个平方项且符号相反是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

按照指定方法解下列方程:
(1)3x2-15=0  (用直接开平方法)
(2)x2-8x+15=0  (用因式分解法)
(3)x2-6x+7=0 (用配方法)
(4)y2+2=2
2
y
(用求根公式法)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北海)已知两圆的半径分别是3和4,圆心距的长为1,则两圆的位置关系为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•柳州)如图,在△ABC中,AB=2,AC=BC=
5

(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=
1
2
S△ABC
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).
 
附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3=
3
,y4=-
3

所以,原方程的解是y1=1,y2=-1,y3=
3
,y4=-
3

再如x2-2=4
x2-2
,可设y=
x2-2
,用同样的方法也可求解.

查看答案和解析>>

科目:初中数学 来源: 题型:

用因式分解法解下列方程:
(1)2x(x+1)+3(x+1)=0
(2)(2x+3)2-25=0.

查看答案和解析>>

同步练习册答案