分析 首先根据OE⊥OF,∠BOF=2∠BOE,求出∠BOE=30°;然后求出∠AOE=150°,再根据OC平分∠AOE,求出∠AOC的度数;最后根据∠BOD和∠AOC互为对顶角,求出∠BOD的度数是多少即可.
解答 解:∵OE⊥OF,
∴∠EOF=90°,
∵∠BOF=2∠BOE,
∴3∠BOE=90°,
∴∠BOE=90°÷3=30°,
∴∠AOE=180°-∠BOE=180°-30°=150°,
又∵OC平分∠AOE,
∴∠AOC=$\frac{1}{2}$∠AOE=$\frac{1}{2}×150°$=75°,
∵∠BOD和∠AOC互为对顶角,
∴∠BOD=∠AOC=75°.
故答案为:75°.
点评 (1)此题主要考查了垂线的性质和应用,要熟练掌握,解答此题的关键是要明确垂线的性质:在平面内,过一点有且只有一条直线与已知直线垂直.
(2)此题还考查了对顶角和邻补角的特征和应用,要熟练掌握,解答此题的关键是要明确:①有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.②补角互补,即和为180°.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com