精英家教网 > 初中数学 > 题目详情
如图所示,抛物线y=-(x-m)2的顶点为A,直线l:y=
3
x-
3
m
与y轴的交点为B,其精英家教网中m>0.
(1)写出抛物线对称轴及顶点A的坐标;(用含有m的代数式表示)
(2)证明点A在直线l上,并求∠OAB的度数;
(3)动点Q在抛物线的对称轴上,在对称轴左侧的抛物线上是否存在点P,使以P、Q、A为顶点的三角形与△OAB全等?若存在,求出m的值,并写出所有符合上述条件的P点坐标;若不存在,说明理由.
分析:(1)根据顶点式抛物线解析式即可得出抛物线的对称轴为x=m,顶点坐标A(m,0);
(2)将A点的坐标代入直线l的解析式中即可判定出点A是否在直线l上.
根据题意不难得出OA=m,OB=
3
m,据此可求出∠OAB的正切值,进而可求出∠OAB的度数;
(3)本题要分四种情况进行讨论:
①当∠AQP=90°,∠QAP=60°,m=3,P点的坐标为(3-3
3
,-3);
②当∠AQP=90°,∠QPA=60°,m=
3
,P点的坐标为(0,-3);
③当∠APQ=90°,∠AQP=60°,m=
2
3
,因此P点的坐标为(
2-
3
3
,-
1
3
);
④当∠APQ=90°,∠QAP=60°,m=2,P点的坐标为(2-
3
,-3).
解答:解:(1)对称轴为直线x=m,顶点A(m,0);

(2)把x=m代入函数y=
3
x-
3
m,
得y=
3
m-
3
m=0
∴点A(m,0)在直线l上.
当x=0时,y=-
3
m
∴B(0,-
3
m),tan∠OAB=
3

∴∠OAB=60°;

(3)①当∠AQP=90°,∠QAP=60°,AQ=OA=m,PQ=OB=
3
m
,因此P点坐标为(m-
3
m,-m),
将P点的坐标代入抛物线的解析式可得m=
1
3

因此P点的坐标为(
1-
3
3
,-
1
3
).
②当∠AQP=90°,∠QPA=60°,此时P,B重合,
因此P点坐标为(0,-
3
m),精英家教网
代入抛物线解析式得m=
3
,因此P点的坐标为(0,-3).
③当∠APQ=90°,∠QAP=60°,PA=m,过P作PC⊥AQ于C,
那么PC=AP•sin60°=
3
2
m,AC=
1
2
m,
因此P点的坐标为(m-
3
2
m,-
1
2
m).
代入抛物线得m=
2
3
,因此P点的坐标为(
2-
3
3
,-
1
3
);
④当∠APQ=90°,∠AQP=60°,PA=OB=
3
m,
过P作PD⊥AQ于D,
精英家教网那么PD=AP•sin30°=
3
2
m,AD=
3
2
m,
因此P点的坐标为(m-
3
2
m,-
3
2
m),
代入抛物线得m=2,
因此P点的坐标为(2-
3
,-3).
点评:本题考查了二次函数的性质及全等三角形的判定等知识点,(3)在不确定全等三角形的对应角和对应边的情况下要分类讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,抛物线y=ax2+bx+c与两坐标轴的交点分别是A、B、E,且△ABE是等腰直角三角形,AE=BE,则下列关系式中不能成立的是(  )
A、b=0B、S△ABE=c2C、ac=-1D、a+c=0

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河源二模)已知:如图所示,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).
(1)求抛物线的解析式;
(2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标;
(3)设抛物线交y轴于点C,问该抛物线对称轴上是否存在点M,使得△MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•槐荫区一模)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(-1,0)、(0,-3).
(1)求抛物线的函数解析式;
(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;
(3)在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)如图所示,抛物线对应的函数解析表达式只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)如图所示的抛物线是把y=-x2经过平移而得到的.这时抛物线过原点O和x轴正向上一点A,顶点为P;
①当∠OPA=90°时,求抛物线的顶点P的坐标及解析表达式;
②求如图所示的抛物线对应的二次函数在-
1
2
≤x≤
1
2
时的最大值和最小值.

查看答案和解析>>

同步练习册答案