精英家教网 > 初中数学 > 题目详情
3.解方程
(1)x2+2x=0           
(2)x2+4x-1=0.

分析 (1)利用因式分解法解方程;
(2)利用配方法解方程.

解答 解:(1)x(x+2)=0,
x=0或x+2=0,
所以x1=0,x2=-2;
(2)x2+4x=1,
x2+4x=5,
(x+2)2=5,
x+2=±$\sqrt{5}$,
所以x1=-2+$\sqrt{5}$,x2=-2-$\sqrt{5}$.

点评 本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.等腰△ABC中,AB=AC=6,∠BAC=120°,P为BC的中点,小明拿着含30°的透明三角板,使30°角的顶点落在P处,三角板绕P点旋转.
(1)如图1,当三角板的两边分别交AB、AC于点E、F时,求证:△BPE∽△CFP;
(2)操作:将三角形绕点P旋转到图2情形时,三角板的两边分别交BA的延长线、边AC于E、F.
①探究△BPE、△CFP还相似吗?(只写结论,不需证明);
②连接EF,求证:EP平分∠BEF;
③设EF=m,△EPF的面积为S,试用m的代数式表示S.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.若1-m与$\frac{2m-1}{3}$互为相反数,则m的值为2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知$\frac{x}{y}$=$\frac{4}{5}$,则$\frac{3x}{x+y}$的值为$\frac{4}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.2015年9月25日武汉园博园正式开园,其中在9月30日的游客人数为3.9万人.在接下来的国庆节七天假期中,每天的游客人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)
日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日
人数变化
(万人)
+2.1+1.78+0.2-0.8-1-1.6-1.5
(1)10月2日的人数为7.78万人
(2)国庆节七天假期里,游客人数最多的是10月3日,达到7.98万人;游客人数最少的是10月7日,达到3.08万人
(3)请问园博园在国庆节这七天内一共接待了多少游客?(结果精确到万位)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.方程(3x+1)(2x-3)=1化成一般式的常数项是-4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于$\frac{1}{2}$AB长为半径作弧,两弧交于点C.若点C的坐标为(m-1,2n),则m与n的关系为m-1=2n.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.多项式a3+3ab-ab2+25是三次四项式,常数项是25

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.阅读下列材料:
计算(-$\frac{1}{30}$)÷($\frac{2}{3}$-$\frac{1}{10}$+$\frac{1}{6}$-$\frac{2}{5}$)
解法①:原式=(-$\frac{1}{30}$)÷$\frac{2}{3}$-(-$\frac{1}{30}$)÷$\frac{1}{10}$+(-$\frac{1}{30}$)÷$\frac{1}{6}$-(-$\frac{1}{30}$)÷$\frac{2}{5}$
=-$\frac{1}{20}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{12}$=$\frac{1}{6}$
解法②:原式=(-$\frac{1}{30}$)÷[($\frac{2}{3}$+$\frac{1}{6}$)-($\frac{1}{10}$+$\frac{2}{5}$)]=(-$\frac{1}{30}$)÷($\frac{5}{6}$-$\frac{1}{2}$)=-$\frac{1}{30}$×3=-$\frac{1}{10}$
解法③:原式的倒数为($\frac{2}{3}$-$\frac{1}{10}$+$\frac{1}{6}$-$\frac{2}{5}$)÷(-$\frac{1}{30}$)=($\frac{2}{3}$-$\frac{1}{10}$+$\frac{1}{6}$-$\frac{2}{5}$)×(-30)=-20+3-5+12=-10故原式=-$\frac{1}{10}$
(1)上面得出的结果不同,其中肯定有错误的解法,你认为解法①是错误的.在正确的解法中,你认为解法③最简便,该解法运用的运算律是乘法分配律.
(2)请计算:(-$\frac{1}{42}$)÷($\frac{1}{6}$-$\frac{3}{14}$+$\frac{2}{3}$-$\frac{3}{7}$).

查看答案和解析>>

同步练习册答案