精英家教网 > 初中数学 > 题目详情
计算:
(-ab)2a2b
=
 
分析:先把分子根据积的乘方进行运算,然后通过约分即可得到结论.
解答:解:原式=
a2b2
a2b
=b.
故答案为b.
点评:本题考查了约分的概念:先把分式的分子和分母化为因式乘积的形式,然后约去相同的因式,把分式化为最简分式,这个过程叫约分.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、计算:3(-ab+2a)-(3a-b)=
-3ab+3a+b

查看答案和解析>>

科目:初中数学 来源: 题型:

16、计算:3(-ab+2a)-(3a+ab).

查看答案和解析>>

科目:初中数学 来源: 题型:

仿作题.示例:计算tan15°的值.

(一)作图
(1)作出Rt△ABC,使∠C=90°,∠ABC=30°;
(2)延长CB到D,使BD=AB;
(二)证明
因为在Rt△ABC中,∠ABC=30°.所以,BD=AB=2a,所以,又∠ADB+∠DAB=∠ABC=30°.
所以∠ADB+∠DAB=
1
2
×30
°=15°
(三)计算
设AC=a,因为在Rt△ABC中,∠ABC=30°.所以,BD=AB=2a
BC=
AB2-AC2
=
(2a)2-a2
=
3 
a

所以CD=CB+BD=
3 
a
+2a=(2+
3
)a
,所以tan15°=
AC
CB
=
a
(2+
3
)a
=(2-
3
)a

问题:请您根据tan15°的计算方法,计算tan22°30′的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•佛山)我们知道,矩形是特殊的平行四边形,所以矩形除了具备平行四边形的一切性质还有其特殊的性质;同样,黄金矩形是特殊的矩形,因此黄金矩形有与一般矩形不一样的知识.
已知平行四边形ABCD,∠A=60°,AB=2a,AD=a.
(1)把所给的平行四边形ABCD用两种方式分割并作说明(见题答卡表格里的示例);要求:用直线段分割,分割成的图形是学习过的特殊图形且不超出四个.
分割图形       分割或图形说明
示例:
示例:
①分割成两个菱形.
②两个菱形的边长都为a,锐角都为60°.
(2)图中关于边、角和对角线会有若干关系或问题.现在请计算两条对角线的长度.要求:计算对角线BD长的过程中要有必要的论证;直接写出对角线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.
(1)求证:DE-BF=EF;
(2)若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明);
(3)若AB=2a,点G为BC边中点时,试探究线段EF与GF之间的数量关系,并通过计算来验证你的结论.

查看答案和解析>>

同步练习册答案