14£®¶¨Ò壺yÊÇÒ»¸ö¹ØÓÚxµÄº¯Êý£¬Èô¶ÔÓÚÿ¸öʵÊýx£¬º¯ÊýyµÄֵΪÈýÊýx+2£¬2x+1£¬-5x+20ÖеÄ×îСֵ£¬Ôòº¯Êýy½Ð×öÕâÈýÊýµÄ×îСֵº¯Êý£®
£¨1£©»­³öÕâ¸ö×îСֵº¯ÊýµÄͼÏ󣬲¢ÅжϵãA£¨1£¬3£©ÊÇ·ñΪÕâ¸ö×îСֵº¯ÊýͼÏóÉϵĵ㣻
£¨2£©ÉèÕâ¸ö×îСֵº¯ÊýͼÏóµÄ×î¸ßµãΪB£¬µãA£¨1£¬3£©£¬¶¯µãM£¨m£¬m£©£®
¢ÙÖ±½Óд³ö¡÷ABMµÄÃæ»ý£¬ÆäÃæ»ýÊÇ2£»
¢ÚÈôÒÔMΪԲÐĵÄÔ²¾­¹ýA£¬BÁ½µã£¬Ð´³öµãMµÄ×ø±ê£»
¢ÛÒÔ¢ÚÖеĵãMΪԲÐÄ£¬ÒÔ$\sqrt{2}$Ϊ°ë¾¶×÷Ô²£®ÔÚ´ËÔ²ÉÏÕÒÒ»µãP£¬Ê¹PA+$\frac{\sqrt{2}}{2}$PBµÄÖµ×îС£¬Ö±½Óд³ö´Ë×îСֵ£®
¸½£ºÏÂÁÐ֪ʶ¿ÉÖ±½ÓÓ¦Óãº
1¡¢Öе㹫ʽ£ºÒÑÖªA£¨x₁£¬y₁£©Óë B£¨x₂£¬y₂£©£¬ÔòÏ߶ÎABµÄÖеãMµÄ×ø±êΪ£ºM £¨ $\frac{{x}_{1}+{x}_{2}}{2}$£¬$\frac{{y}_{1}+{y}_{2}}{2}$ £©
2¡¢Èç¹ûÁ½ÌõÖ±Ïßy=k1x+m£¬ºÍy=k2x+n´¹Ö±£¬Ôòk1•k2=-1£®

·ÖÎö £¨1£©¸ù¾ÝÈýÊýµÄ×îСֵº¯ÊýµÄ¶¨Òå»­³öͼÏó¼´¿É£¬¸ù¾ÝͼÏó¿ÉÒÔÅжϵãAµÄλÖã®
£¨2£©¢ÙÈçͼ2ÖУ¬×÷ON¡ÍABÓÚN£¬ÓÉAB¡ÎOM£¬µÃS¡÷ABM=S¡÷ABOÓɴ˼´¿ÉÅжϣ®
¢ÚÇó³öÏ߶ÎABµÄÖд¹Ïߣ¬ÔÙÁгö·½³Ì×é¼´¿É½â¾öÎÊÌ⣮
¢ÛÈ¡MBµÄÖеãD£¬PΪԲÉÏÈÎÒâÒ»µã£¬PM=$\sqrt{2}$£¬MB=2£¬MD=1£¬¿ÉÖ¤¡÷MPD¡×¡÷MBP£¬ÔòPA+$\frac{\sqrt{2}}{2}$PB ×îСҲ¾ÍÊÇPA+PD×îС£¬Çó³öADµÄÖµ¼´¿É£®

½â´ð ½â£º£¨1£©×îСֵº¯ÊýµÄͼÏó¼ûͼÖÐʵÏߣ¬

¡ßx=1ʱ£¬y=3£¬
¡àµãA£¨1£¬3£©ÔÚÕâ¸ö×îСֵº¯ÊýµÄͼÏóÉÏ£®
£¨2£©¢ÙÈçͼ2ÖУ¬×÷ON¡ÍABÓÚN£®

¡ßAB¡ÎOM£¬
¡àS¡÷ABM=S¡÷ABO£¬
¡ßA91£¬3£©£¬B£¨3£¬5£©£¬ON=$\sqrt{2}$£¬AB=2$\sqrt{2}$
¡àS¡÷ABM=$\frac{1}{2}$¡Á2$\sqrt{2}$¡Á$\sqrt{2}$=2£®
¹Ê´ð°¸Îª£º2£®
¢Ú¡ßÖ±ÏßABµÄ½âÎöʽΪy=x+2£¬
¡àÏ߶ÎABµÄÖд¹ÏߵĽâÎöʽΪy=y=-x+6£¬
ÓÉ$\left\{\begin{array}{l}{y=-x+6}\\{y=x}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$£¬
¡àµãM×ø±êΪ£¨3£¬3£©£»
¢ÛPA+$\frac{\sqrt{2}}{2}$PBµÄ×îСֵΪ$\sqrt{5}$£¬ÀíÓÉÈçÏ£º
Èçͼ£¬A£¨1£¬3£©B£¨3£¬5£©£¬M£¨3£¬3£©£¬
È¡MBµÄÖеãD£¬PΪԲÉÏÈÎÒâÒ»µã£¬PM=$\sqrt{2}$£¬MB=2£¬MD=1£¬¿ÉÖ¤¡÷MPD¡×¡÷MBP£¬
¿ÉµÃPD=$\frac{\sqrt{2}}{2}$PB£¬ÔòPA+$\frac{\sqrt{2}}{2}$PB ×îСҲ¾ÍÊÇPA+PD×îС£¬ËùÒÔÁ¬½ÓAD£¬Ï߶ÎADµÄ³¤ÊÇËùÇóµÄ×îСֵ£¬×îСֵΪ$\sqrt{5}$£®

µãÆÀ ±¾Ì⿼²éÔ²µÄ×ÛºÏÌâ¡¢Ò»´Îº¯Êý¡¢Æ½ÐÐÏßµÄÐÔÖʵÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇÀí½âÌâÒ⣬ÕýÈ·×÷³öͼÐΣ¬Ñ§»áת»¯µÄ˼Ï룬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®¹Û²ìÏÂÁз½³Ì£º¢Ù$\frac{x}{4}$+$\frac{x-1}{2}$=1µÄ½âΪx=2£»¢Ú$\frac{x}{6}$+$\frac{x-2}{2}$=1µÄ½âΪx=3£»¢Û$\frac{x}{8}$+$\frac{x-3}{2}$=1µÄ½âΪx=4¡­Èô·½³Ì$\frac{x}{a}$+$\frac{x-b}{2}$=1µÄ½âΪx=10£¬Ôòa+bµÄֵΪ29£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èçͼ£¬ÒÑÖª³¤·½ÌåABCD-A1B1C1D1£¬AB=2£¬AD=1£¬AA1=2£¬PÊÇÀâA1B1ÉÏÈÎÒâÒ»µã£¬QÊDzàÃæ¶Ô½ÇÏßAB1ÉÏÒ»µã£¬ÔòPD1+PQµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®3B£®$\frac{3\sqrt{2}}{2}$C£®$\sqrt{5}$D£®1+$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÓÃ×Öĸ±íʾͼÖÐÒõÓ°²¿·ÖµÄÃæ»ý£º5.5xy£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èôx¡¢y»¥ÎªÏà·´Êý£¬a¡¢b»¥Îªµ¹Êý£¬cµÄ¾ø¶ÔÖµµÈÓÚ2£¬Ôò£¨$\frac{x+y}{2}$£©2016-£¨-ab£©2016+c2=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®µ¥Ïîʽ-$\frac{3{¦Ð}^{2}{x}^{2}{y}^{3}}{5}$µÄ´ÎÊýÊÇ5´Î£¬ÏµÊýÊÇ-$\frac{3{¦Ð}^{2}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®¼ÆË㣺
£¨1£©tan30¡ã•sin60¡ã+cos230¡ã-sin245¡ã•cos60¡ã    
£¨2£©$\sqrt{12}$-|-3|+£¨$\frac{1}{2}$£©-2-4cos30¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®-3xmy2Óë5x3ynÊÇͬÀàÏÔòm+n=5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Ò»Ôª¶þ´Î·½³Ìx2+3x-4=0µÄÁ½¸ù·Ö±ðΪ1ºÍ-4£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸