精英家教网 > 初中数学 > 题目详情
7.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.

(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;
(2)若点P在线段AB上.
①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;
②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.

分析 (1)根据正方形的性质和全等三角形的判定定理证明△APE≌△CFE,根据全等三角形的性质证明结论;
(2)①根据正方形的性质、等腰直角三角形的性质解答;
②根据PE∥CF,得到$\frac{PE}{BC}$=$\frac{PG}{GB}$,代入a、b的值计算求出a:b,根据角平分线的判定定理得到∠HCG=∠BCG,证明∠AEC=∠ACB,即可求出∠AEC的度数.

解答 解:(1)∵四边形ABCD和四边形BPEF是正方形,
∴AB=BC,BP=BF,
∴AP=CF,
在△APE和△CFE中,
$\left\{\begin{array}{l}{AP=CF}\\{∠P=∠F}\\{PE=EF}\end{array}\right.$,
∴△APE≌△CFE,
∴EA=EC;
(2)①∵P为AB的中点,
∴PA=PB,又PB=PE,
∴PA=PE,
∴∠PAE=45°,又∠DAC=45°,
∴∠CAE=90°,即△ACE是直角三角形;
②∵EP平分∠AEC,EP⊥AG,
∴AP=PG=a-b,BG=a-(2a-2b)=2b-a
∵PE∥CF,
∴$\frac{PE}{BC}$=$\frac{PG}{GB}$,即$\frac{b}{a}$=$\frac{a-b}{2b-a}$,
解得,a=$\sqrt{2}$b;
作GH⊥AC于H,
∵∠CAB=45°,
∴HG=$\frac{\sqrt{2}}{2}$AG=$\frac{\sqrt{2}}{2}$×(2$\sqrt{2}$b-2b)=(2-$\sqrt{2}$)b,又BG=2b-a=(2-$\sqrt{2}$)b,
∴GH=GB,GH⊥AC,GB⊥BC,
∴∠HCG=∠BCG,
∵PE∥CF,
∴∠PEG=∠BCG,
∴∠AEC=∠ACB=45°.
∴a:b=$\sqrt{2}$:1;∴∠AEC=45°.

点评 本题考查的是正方形的性质、直角三角形的判定、相似三角形的判定和性质以及等腰直角三角形的性质,掌握相关的性质定理和判定定理、正确作出辅助性是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.一组数据3,4,6,8,x的平均数是6,则这组数据的中位数是6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知,一元二次方程x2-8x+15=0的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是(  )
A.2B.8C.2或8D.2<O1O2<8

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.课本中有一个例题:
有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?
这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2
我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:
(1)若AB为1m,求此时窗户的透光面积?
(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,某城市市民广场一入口处有五级高度相等的小台阶.已知台阶总高1.5米,为了安全,现要做一个不锈钢扶手AB及两根与FG垂直且长为1米的不锈钢架杆AD和BC(杆子的底端分别为D、C),且∠DAB=66.5°.(参考数据:cos66.5°≈0.40,sin66.5°≈0.92)
(1)求点D与点C的高度差DH;
(2)求所有不锈钢材料的总长度(即AD+AB+BC的长,结果精确到0.1米)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为(  )
A.7.6×10-9B.7.6×10-8C.7.6×109D.7.6×108

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,某无人机于空中A处探测到目标B,D,从无人机A上看目标B,D的俯角分别为30°,60°,此时无人机的飞行高度AC为60m,随后无人机从A处继续飞行30$\sqrt{3}$m到达A′处,
(1)求A,B之间的距离;
(2)求从无人机A′上看目标D的俯角的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列命题中,错误的是(  )
A.两组对边分别平行的四边形是平行四边形
B.有一个角是直角的平行四边形是矩形
C.有一组邻边相等的平行四边形是菱形
D.内错角相等

查看答案和解析>>

同步练习册答案