精英家教网 > 初中数学 > 题目详情
(2006•南平)如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.请探究:
(1)线段AE与CG是否相等请说明理由:
(2)若设AE=x,DH=y,当x取何值时,y最大?
(3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE?

【答案】分析:(1)AE=CG,要证结论,必证△ABE≌△CBG,由正方形的性质很快确定∠3=∠4,又AB=BC,BE=BG,符合SAS即证.
(2)先证△ABE∽△DEH,所以,即可求出函数解析式y=-x2+x,继而求出最值.
(3)要使△BEH∽△BAE,需,又因为△ABE∽△DEH,所以,即,所以当E点是AD的中点时,△BEH∽△BAE.
解答:解:(1)AE=CG.
理由:正方形ABCD和正方形BEFG中,
∠3+∠5=90°,
∠4+∠5=90°,
∴∠3=∠4.
又AB=BC,BE=BG,
∴△ABE≌△CBG.
∴AE=CG.

(2)∵正方形ABCD和正方形BEFG,
∴∠A=∠D=∠FEB=90°.
∴∠1+∠2=90°∠2+∠3=90°.
∴∠1=∠3.
又∵∠A=∠D,
∴△ABE∽△DEH.


∴y=-x2+x
=-(x-2+
当x=时,y有最大值为

(3)解:当E点是AD的中点时,△BEH∽△BAE,
理由:∵E是AD中点,
∴AE=
∴DH=
又∵△ABE∽△DEH,

又∵

又∠DAB=∠FEB=90°,
∴△BEH∽△BAE.
点评:本题结合正方形的性质考查二次函数的综合应用,以及正方形的性质和相似三角形的判定
练习册系列答案
相关习题

科目:初中数学 来源:2010年浙江省宁波市余姚中学自主招生考试数学试卷(解析版) 题型:解答题

(2006•南平)如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.请探究:
(1)线段AE与CG是否相等请说明理由:
(2)若设AE=x,DH=y,当x取何值时,y最大?
(3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE?

查看答案和解析>>

科目:初中数学 来源:2010年广东省湛江市初中毕业生学业水平综合测试数学试卷(一)(解析版) 题型:解答题

(2006•南平)如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.请探究:
(1)线段AE与CG是否相等请说明理由:
(2)若设AE=x,DH=y,当x取何值时,y最大?
(3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE?

查看答案和解析>>

科目:初中数学 来源:2006年福建省南平市中考数学试卷(解析版) 题型:解答题

(2006•南平)如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.请探究:
(1)线段AE与CG是否相等请说明理由:
(2)若设AE=x,DH=y,当x取何值时,y最大?
(3)连接BH,当点E运动到AD的何位置时,△BEH∽△BAE?

查看答案和解析>>

科目:初中数学 来源:2009年江苏省苏州市张家港市中考数学模拟练习试卷(2)(解析版) 题型:解答题

(2006•南平)如图每个正方形是由边长为1的小正方形组成.

(1)观察图形,请填与下列表格:
正方形边长1357n(奇数)
红色小正方形个数
正方形边长2468n(偶数)
红色小正方形个数
(2)在边长为n(n≥1)的正方形中,设红色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案