精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是(  )
A.DE="DO"B.AB=AC
C.CD="DB"D.AC∥OD
:解:当AB=AC时,如图:连接AD,
∵AB是⊙O的直径,
∴AD⊥BC,
∴CD=BD,
∵AO=BO,
∴OD是△ABC的中位线,
∴OD∥AC,
∵DE⊥AC,
∴DE⊥OD,
∴DE是⊙O的切线.
所以B正确.
当CD=BD时,AO=BO,∴OD是△ABC的中位线,
∴OD∥AC
∵DE⊥AC
∴DE⊥OD
∴DE是⊙O的切线.
所以C正确.
当AC∥OD时,∵DE⊥AC,∴DE⊥OD.
∴DE是⊙O的切线.
所以D正确.
故选A.
:根据AB=AC,连接AD,利用圆周角定理可以得到点D是BC的中点,OD是△ABC的中位线,OD∥AC,然后由DE⊥AC,得到∠ODE=90°,可以证明DE是⊙O的切线.
根据CD=BD,AO=BO,得到OD是△ABC的中位线,同上可以证明DE是⊙O的切线.
根据AC∥OD,AC⊥DE,得到∠EDO=90°,可以证明DE是⊙O的切线.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为【   】
A.cmB.4cmC.cmD.cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知⊙O的直径AB=8cm,C为⊙O上的一点,∠BAC=30°,则BC=_________cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O直径,且AB=4cm,弦CD⊥AB,∠COB=45°,则CD为   ▲  cm.   

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知的边相切于点的半径为,当相切时,的半径是


                        
                     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如果两圆的半径分别是2 cm和3cm,圆心距为5cm,那么这两圆的位置关系是(   )
A.内切;B.相交;C.外切;D.外离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本小题满分10分)
如图,O是△ABC的外接圆,AB = AC,过点A作AP∥BC,交BO的延长线于P.
(1)求证:AP是O的切线;
(2)若O的半径R = 6,△ACD为等边三角形时,求线段AP的长.     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在△ACB中,∠ACB = 90°,AC = 4,BC = 2,点P为射线CA上的一个动点,以为圆心,1为半径作
(1)连结,若,试判断与直线AB的位置关系,并说明理由;
(2)当PC为              时,与直线AB相切?当与直线AB相交时,写出PC的取值范围为                  
(3)当与直线AB相交于点M、N时,是否存在△PMN为正三角形?若存在,求出PC的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本小题满分8分)
如图,已知在⊙O中,AB=4,AC是⊙O的直径,AC⊥BD于F,∠A=30°.

(1)求图中阴影部分的面积;

 

 
(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.

(3) 试判断⊙O中其余部分能否给(2)中的圆锥做两个底面。

查看答案和解析>>

同步练习册答案