【题目】半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,⊙O与l相切于点F,DC在l上.
(1)过点B作的一条切线BE,E为切点.
①填空:如图1,当点A在⊙O上时,∠EBA的度数是 ;
②如图2,当E,A,D三点在同一直线上时,求线段OA的长;
(1)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC.与OF重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.
【答案】(1)①30°;②OA=-1;(2)≤S扇形MON≤π.
【解析】
试题分析:①根据切线的性质以及直角三角形的性质得出∠EBA的度数即可;②利用切线的性质以及矩形的性质和相似三角形的判定和性质得出,进而求出OA即可;
(2)设∠MON=n°,得出S扇形MON=n,进而利用函数增减性分析①当N,M,A分别与D,B,O重合时,MN最大,②当MN=DC=2时,MN最小,分别求出即可.
试题解析:(1)①∵半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,当点A在⊙O上时,过点B作的一条切线BE,E为切点,∴OB=4,EO=2,∠OEB=90°,∴∠EBA的度数是:30°;
②如图2,∵直线l与⊙O相切于点F,∴∠OFD=90°,∵正方形ADCB中,∠ADC=90°,
∴OF∥AD,∵OF=AD=2,∴四边形OFDA为平行四边形,∵∠OFD=90°,∴平行四边形OFDA为矩形,∴DA⊥AO,∵正方形ABCD中,DA⊥AB,∴O,A,B三点在同一条直线上;∴EA⊥OB,∵∠OEB=∠OAE,
∴△EOA∽△BOE,∴,∴OE2=OAOB,解得:OA=-1±,∵OA>0,∴OA=-1;
(2)如图3,设∠MON=n°,
S扇形MON=(cm2), S随n的增大而增大,∠MON取最大值时,S扇形MON最大,当∠MON取最小值时,S扇形MON最小,过O点作OK⊥MN于K,∴∠MON=2∠NOK,MN=2NK,
在Rt△ONK中,sin∠NOK=,∴∠NOK随NK的增大而增大,∴∠MON随MN的增大而增大,
∴当MN最大时∠MON最大,当MN最小时∠MON最小,
①当N,M,A分别与D,B,O重合时,MN最大,MN=BD,∠MON=∠BOD=90°,S扇形MON最大=π(cm2),
②当MN=DC=2时,MN最小,∴ON=MN=OM,∴∠NOM=60°,S扇形MON最小=(cm2), ∴≤S扇形MON≤π.
科目:初中数学 来源: 题型:
【题目】如图所示,是一张直角三角形的纸片,两直角边AC=6㎝,BC=8㎝,现将△ABC折叠,使点B与点A重合,折痕为DE,则AD的长为( )
A. 4㎝ B. 5㎝ C. 6㎝ D. ㎝
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题:
①对角线互相垂直的四边形是菱形;
②点G是△ABC的重心,若中线AD=6,则AG=3;
③若直线经过第一、二、四象限,则k<0,b>0;
④定义新运算:a*b=,若(2x)*(x﹣3)=0,则x=1或9;
⑤抛物线的顶点坐标是(1,1).
其中是真命题的有 .(只填序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com