【题目】如图,在△ABC中,AB=AC,∠BAC=90°,点D是边BC上的动点,连接AD,点C关于直线AD的对称点为点E,射线BE与射线AD交于点F.
(1)在图1中,依题意补全图形;
(2)记(),求的大小;(用含的式子表示)
(3)若△ACE是等边三角形,猜想EF和BC的数量关系,并证明.
【答案】(1)见解析;(2);(3)BC=2EF,证明见解析.
【解析】
(1)根据题意画图即可补全图形;
(2)如图3,连接AE、DE,根据轴对称的性质可得:AE=AC,∠EAD=,进而可用α的代数式表示出∠BAF,然后在等腰△ABE中利用三角形的内角和即可求出;
(3)如图4,设AF、CE交于点G,由△ACE是等边三角形可得∠EAC=60°,CE=AC,然后根据轴对称的性质可得AF⊥CE,∠FAE=,进而可得∠BAF=60°,CE=2EG,易证△EFG为等腰直角三角形,从而可得,而,进一步即可得出结论.
解:(1)补全图形如图2:
(2)如图3,连接AE、DE,
∵点C关于直线AD的对称点为点E,∴AE=AC,∠EAD=,
∵AB=AC,∠BAC=90°,∴AB=AE,,
∴;
(3)猜想:BC=2EF.
证明:如图4,设AF、CE交于点G,
∵△ACE是等边三角形,∴∠EAC=60°,CE=AC,
∵点C关于直线AD的对称点为点E,
∴AF⊥CE,∠FAE=,∴∠BAF=60°,CE=2EG,
由(2)题知,∠ABF=45°+30°=75°,则在△ABF中,∠AFB=180°-∠ABF-∠BAF=45°,
∴∠GEF=45°,∴,
又∵AB=AC,∠BAC=90°,∴,
∴.
科目:初中数学 来源: 题型:
【题目】如图,已知内接于,平分,交于点,过作的切线与的延长线交于点.
求证:;
若,,求的长;
在题设条件下,为使是平行四边形,应满足怎样的条件(不要求证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形ABC(顶点是网格线的交点的三角形)的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).
(1)请作出△ABC关于y轴对称的△A1B1C1;
(2)△A1B1C1的面积是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l与y轴交于点D.
(1)求抛物线的函数表达式;
(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若,且△BCG与△BCD面积相等,求点G的坐标;
(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在同一平面内,若点P与△ABC三个顶点中的任意两个顶点连接形成的三角形都是等腰三角形,则称点P是△ABC的巧妙点.
(1)如图1,求作△ABC的巧妙点P(尺规作图,不写作法,保留作图痕迹).
(2)如图2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙点P (尺规作图,不写作法,保留作图痕迹),并直接写出∠BPC的度数是 .
(3)等边三角形的巧妙点的个数有( )
A.2 B.6 C.10 D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc<0;②a-b+c>0;③ 2a+b=0;④b2-4ac>0 ⑤a+b+c>m(am+b)+c,(m>1的实数),其中正确的结论有()
A. 1个 B. 2 C. 3 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
在数学课上,老师提出利用尺规作图完成下面问题:
已知:直线与直线外一点.求作:过点作直线的平行线.
已知:直线与直线外一点.求作:过点作直线的平行线.
小明的作法如下:
如图,
①在直线上任取两点,;
②以点为圆心,线段的长为半径作圆弧;
以点为圆心,线段的长为半径作圆弧;
两圆弧(与点在同侧)的交点为;
③过点,作直线.
所以直线即为所求.
如图,
①在直线上任取两点,;
②以点为圆心,线段的长为半径作圆弧;
以点为圆心,线段的长为半径作圆弧;
两圆弧(与点在同侧)的交点为;
③过点,作直线.
所以直线即为所求.
老师说:“小明的作法正确.”
请回答:()利用尺规作图完成小明的做法(保留作图痕迹);
()该作图的依据是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如将多项式因式分解的结果为,当时,,,,此时可以得到数字密码或等.
(1)根据上述方法,当,时,对于多项式分解因式后可以形成哪些数字密码(写出四个即可)?
(2)将多项式因式分解成三个一次式的乘积后,利用题目中所示的方法,当时可以得到密码,求,的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com