精英家教网 > 初中数学 > 题目详情
如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:
①∠AFC=∠C;
②DE=CF;
③△ADE∽△FDB;
④∠BFD=∠CAF
其中正确的结论是        
①③④

试题分析:在△ABC与△AEF中∵AB=AE,BC=EF,∠B=∠E
∴△AEF≌△ABC,所以AF=AC,则∠AFC=∠C;
由∠B=∠E,∠ADE=∠FDB,可知:△ADE∽△FDB;
由于∠EAF=∠BAC,所以∠EAD=∠CAF,
由△ADE∽△FDB可得∠EAD=∠BFD,
所以∠BFD=∠CAF.
综上可知:①③④正确.
点评:本题是一道基础题,但考查的知识点较多,需要根据条件仔细观察图形,认真解答.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
(1)直接用含t的代数式分别表示:QB= _________ ,PD= _________ 
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在等边△ABC中,D、E、F分别是BC,AC,AB上的点,且DE⊥AC,EF⊥AB,FD⊥BC,则△DEF与△ABC的面积之比等于(  )

A.1:3           B.2:3            C.:2          D.:3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知AB=1,A′B′=2,AB∥A′B′,BC∥B′C′,则SABC:SABC=     

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在Rt△ABC中,∠C为直角,CD⊥AB于点D.BC=3,AB=5,写出其中的一对相似三角形是          ;并写出它的面积比        

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

有甲、乙两张纸条,甲纸条的宽度是乙纸条宽的2倍,如图,将这两张纸条交叉重叠地放在一起,重合部分为四边形ABCD.则AB与BC的数量关系为         

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,菱形,矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m﹣n|,于是,|m﹣n|越小,菱形越接近于正方形.
①若菱形的一个内角为70°,则该菱形的“接近度”等于 _________ 
②当菱形的“接近度”等于 _________ 时,菱形是正方形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在梯形ABCD中,AD∥BC,点E、F、G、H是两腰上的点,AE=EF=FB,CG=GH=HD,且四边形EFGH的面积为6cm2,则梯形ABCD的面积为  cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:,设,求A、B、C的值,并且比较它们大小.

查看答案和解析>>

同步练习册答案